A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch i...A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system.Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy.展开更多
This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstr...This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstrated by a theoretical proposal of linearizing the stator of one of the most used motors </span><span style="font-family:Verdana;">in Electrical Vehicles and Hybrid Vehicles</span><span style="font-family:""><span style="font-family:Verdana;">. The proposed Linear Stator Motor is a </span><span style="font-family:Verdana;">simple modification without involving any functional change of the conventional motor. Though theoretical, the indicated possible input </span><span style="font-family:Verdana;">energy saving of more than 75% as compared to the conventional motor is no surprise, as by linearizing the stator, an almost equal linear propulsion output is added to the conventional rotor output. In addition to this remarkable saving in input energy, the proposed Linear Stator Motor that suits all type</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of vehicle</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, can maintain propulsion without the need for a mechanical transmission system. Also, in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">case of watercraft and aircraft vehicles, no external mechanical propulsion drive system is required. It is just an internal force that can push the vehicle forward, backward</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> or laterally, while the conventional rotor output can be utilized for energy recovery by driving a DC generator.展开更多
In this paper, we adopt a novel topological approach to fault diagnosis. In our researches, global information will be introduced into electric power network, we are using mainly BFS of graph theory algorithms and lin...In this paper, we adopt a novel topological approach to fault diagnosis. In our researches, global information will be introduced into electric power network, we are using mainly BFS of graph theory algorithms and linear discriminant principle to resolve fast and exact analysis of faulty components and faulty sections, and finally accomplish fault diagnosis. The results of BFS and linear discriminant are identical. The main technical contributions and innovations in this paper include, introducing global information into electric power network, developing a novel topological analysis to fault diagnosis. Graph theory algorithms can be used to model many different physical and abstract systems such as transportation and communication networks, models for business administration, political science, and psychology and so on. And the linear discriminant is a procedure used to classify an object into one of several a priori groupings dependent on the individual characteristics of the object. In the study of fault diagnosis in electric power network, graph theory algorithms and linear discriminant technology must also have a good prospect of application.展开更多
In this paper, a new control method for synchronous motor with excitation and damper windings is presented. It is based on one type of nonlinear control; feedback linearization control. To make a realization in the se...In this paper, a new control method for synchronous motor with excitation and damper windings is presented. It is based on one type of nonlinear control; feedback linearization control. To make a realization in the sense of electric drive, symmetricM space vector PWM (pulse width modulation) is applied. Estimation of damper winding currents via Lyapunov function for the whole estimated system is done. The aim of control is to make tracking system for rotor speed and square of stator flux. Simulation of motor starting to predefined operating points is done, and also maintaining these points during step change of load torque is obtained. Simulations give good results.展开更多
In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with perman...In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed.展开更多
An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wa...An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wastes. In these factories, operators manually adjust the air flow rate while checking the wastes discharged from the separator outlet. However, the adjustments are basically done by trial and error, and it is difficult to do them appropriately. In this study, we tried to develop the image processing system that calculates the ratio of copper (Cu) product and polyvinyl chloride (PVC) in the wastes as a substitute for the operator’s eyes. Six colors of PVC (white, gray, green, blue, black, and red) were used in the present work. An image consists of foreground and background. An image’s regions of interest are objects (Cu particles) in its foreground. However, the particles having a color similar to the background color are buried in the background. Using the difference of two color backgrounds, we separated particles and background without dependent of background. The Otsu’ thresholding was employed to choose the threshold to maximize the degree of separation of the particles and background. The ratio of Cu to PVC pixels from mixed image was calculated by linear discriminant analysis. The error of PVC pixels resulted in zero, whereas the error of Cu pixels arose to 4.19%. Comparing the numbers of Cu and PVC pixels within the contour, the minority of the object were corrected to the majority of the object. The error of Cu pixels discriminated as PVC incorrectly became zero percent through this correction.展开更多
In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze ...In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.展开更多
Due to the capacity of thermal storage,electric water heater(EWH)is one of the best candidates for demand response programs.However,few attentions are given to the modeling and optimization of EWHs with thermostatical...Due to the capacity of thermal storage,electric water heater(EWH)is one of the best candidates for demand response programs.However,few attentions are given to the modeling and optimization of EWHs with thermostatically-controlled automatic water mixer(TCAWM).In this paper,differential thermodynamic model is established for EWHs with TCAWM and a piecewise linear approximation method is performed for the nonlinear thermodynamic model.The multi-objective optimization model is established by introducing an index reflecting the comfort degree of users,so that the optimal energy usage of the EWH can be obtained by mixed integer linear programming.Testing examples verify the effectiveness of the proposed method.展开更多
In this paper,a combined optimization of a coupled electricity and gas system is presented.For the electricity network a unit commitment problem with optimization of energy and reserves under a power pool,considering ...In this paper,a combined optimization of a coupled electricity and gas system is presented.For the electricity network a unit commitment problem with optimization of energy and reserves under a power pool,considering all system operational and unit technical constraints is solved.The gas network subproblem is a medium-scale mixed-integer nonconvex and nonlinear programming problem.The coupling constraints between the two networks are nonlinear as well.The resulting mixed-integer nonlinear program is linearized with the extended incremental method and an outer approximation technique.The resulting model is evaluated using the Greek power and gas system comprising fourteen gas-fired units under four different approximation accuracy levels.The results indicate the efficiency of the proposed mixed-integer linear program model and the interplay between computational requirements and accuracy.展开更多
The effect of the applied electric field on the conductive behavior of zirconia ceramics is studied by measuring its initial current-voltage curve at various temperatures. The results show that when the field strength...The effect of the applied electric field on the conductive behavior of zirconia ceramics is studied by measuring its initial current-voltage curve at various temperatures. The results show that when the field strength is higher than the threshold for flash-sintering, the curves exhibit a nonlinear behavior by having an additional current on top of the linear current according to Ohm's law. Analyzing its transport behavior reveals that the additional current density is due to the extra oxygen vacancies induced by the electric field. The formation rate of the extra vacancies and associated current was related to the field strength.展开更多
High-precision time interval measurement is a fundamental technique in many advanced applications,including time and distance metrology,particle physics,and ultra-precision machining.However,many of these applications...High-precision time interval measurement is a fundamental technique in many advanced applications,including time and distance metrology,particle physics,and ultra-precision machining.However,many of these applications are confined by the imprecise time interval measurement of electrical signals,restricting the performance of the ultimate system to a few picoseconds,which limits ultrahigh precision applications.Here,we demonstrate an optical means for the time interval measurement of electrical signals that can successfully achieve femtosecond(fs)level precision.The setup is established using the optical frequency comb(OFC)based linear optical sampling(LOS)technique to realize timescale-stretched measurement.We achieve a measurement precision of 82 fs for a single LOS scan measurement and 3.05 fs for the 100-times average with post-processing,which is three orders of magnitude higher than the results of older electrical methods.The high-precision time interval measurement of electrical signals can substantially improve precision measurement technologies.展开更多
We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of...We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.展开更多
基金This project is imbursed by elite university teacher supporting plan
文摘A sliding mode control approach based on the feedback linearization is proposed for the electrically controllable clutch of AMT vehicles. The nonlinear dynamic model for the hydraulic actuator associated with clutch is established. By means of the exact feedback linearization procedure of differential geometry, an equivalent, fully controllable and linear model is derived via a homomorphic transformation for the AMT clutch system.Furthermore, a sliding mode control is introduced to improve robustness. The tracking tests are performed using the sliding mode control on a Santana LX passenger car, and the experimental results prove that this nonlinear controller is of fine robustness and high degree of tracking accuracy.
文摘This paper presents a novel idea of utilizing the reactional torque of the conventional electric motor as a linear output for propulsion in addition to the conventional torque output of the rotor. The idea is demonstrated by a theoretical proposal of linearizing the stator of one of the most used motors </span><span style="font-family:Verdana;">in Electrical Vehicles and Hybrid Vehicles</span><span style="font-family:""><span style="font-family:Verdana;">. The proposed Linear Stator Motor is a </span><span style="font-family:Verdana;">simple modification without involving any functional change of the conventional motor. Though theoretical, the indicated possible input </span><span style="font-family:Verdana;">energy saving of more than 75% as compared to the conventional motor is no surprise, as by linearizing the stator, an almost equal linear propulsion output is added to the conventional rotor output. In addition to this remarkable saving in input energy, the proposed Linear Stator Motor that suits all type</span></span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> of vehicle</span><span style="font-family:Verdana;">s</span><span style="font-family:Verdana;">, can maintain propulsion without the need for a mechanical transmission system. Also, in </span><span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">case of watercraft and aircraft vehicles, no external mechanical propulsion drive system is required. It is just an internal force that can push the vehicle forward, backward</span><span style="font-family:Verdana;">,</span><span style="font-family:Verdana;"> or laterally, while the conventional rotor output can be utilized for energy recovery by driving a DC generator.
文摘In this paper, we adopt a novel topological approach to fault diagnosis. In our researches, global information will be introduced into electric power network, we are using mainly BFS of graph theory algorithms and linear discriminant principle to resolve fast and exact analysis of faulty components and faulty sections, and finally accomplish fault diagnosis. The results of BFS and linear discriminant are identical. The main technical contributions and innovations in this paper include, introducing global information into electric power network, developing a novel topological analysis to fault diagnosis. Graph theory algorithms can be used to model many different physical and abstract systems such as transportation and communication networks, models for business administration, political science, and psychology and so on. And the linear discriminant is a procedure used to classify an object into one of several a priori groupings dependent on the individual characteristics of the object. In the study of fault diagnosis in electric power network, graph theory algorithms and linear discriminant technology must also have a good prospect of application.
文摘In this paper, a new control method for synchronous motor with excitation and damper windings is presented. It is based on one type of nonlinear control; feedback linearization control. To make a realization in the sense of electric drive, symmetricM space vector PWM (pulse width modulation) is applied. Estimation of damper winding currents via Lyapunov function for the whole estimated system is done. The aim of control is to make tracking system for rotor speed and square of stator flux. Simulation of motor starting to predefined operating points is done, and also maintaining these points during step change of load torque is obtained. Simulations give good results.
基金Supported by the National Natural Science Foundation of China(No.41076054)Special Foundation for State Oceanic Administration of China(No.GHME2011GD02)Scientific Research Foundation of Graduate School of Southeast University(No.YBJJ1416)
文摘In this paper, the design, construction and ocean testing of a wave energy conversion system are studied. Based on the motion characteristics of double buoys in ocean waves, a wave energy conversion system with permanent magnet tubular linear generator (PMTLG) is proposed to convert ocean wave energy into electricity. The wave energy conversion system was installed in the Yellow Sea near Lianyungang, China. The ocean test re- suits indicate that it had dynamic and static performance, and obtained an expected amount of electricity. The calcu- lation result indicates the average output power was about 1 000 W, and the conversion efficiency from wave en- ergy into electricity was 1.4%. In addition, the wireless data communication, mechanics and oceanography were also discussed.
文摘An air classifier is used in the recycling process of covered electric wire in the recycling factories, in which the covered electric wires are crushed, sieved, and classified by the air classifier, which generates wastes. In these factories, operators manually adjust the air flow rate while checking the wastes discharged from the separator outlet. However, the adjustments are basically done by trial and error, and it is difficult to do them appropriately. In this study, we tried to develop the image processing system that calculates the ratio of copper (Cu) product and polyvinyl chloride (PVC) in the wastes as a substitute for the operator’s eyes. Six colors of PVC (white, gray, green, blue, black, and red) were used in the present work. An image consists of foreground and background. An image’s regions of interest are objects (Cu particles) in its foreground. However, the particles having a color similar to the background color are buried in the background. Using the difference of two color backgrounds, we separated particles and background without dependent of background. The Otsu’ thresholding was employed to choose the threshold to maximize the degree of separation of the particles and background. The ratio of Cu to PVC pixels from mixed image was calculated by linear discriminant analysis. The error of PVC pixels resulted in zero, whereas the error of Cu pixels arose to 4.19%. Comparing the numbers of Cu and PVC pixels within the contour, the minority of the object were corrected to the majority of the object. The error of Cu pixels discriminated as PVC incorrectly became zero percent through this correction.
文摘In this paper, using axial field finite analysis method, the field of a movable core type linear oscillation motor is analyzed. The program of axial field finite analysis is worked out. Using this program, we analyze various fields, including the field excited by permanent magnet materials, the field by two coils respectively, and the fields with the core moving to various positions.
基金supported by National Natural Science Foundation of China(No.51707099)Natural Science Fund for Colleges and Universities of Jiangsu Province(No.16KJB470009)China Postdoctoral Science Foundation(No.2017M611859).
文摘Due to the capacity of thermal storage,electric water heater(EWH)is one of the best candidates for demand response programs.However,few attentions are given to the modeling and optimization of EWHs with thermostatically-controlled automatic water mixer(TCAWM).In this paper,differential thermodynamic model is established for EWHs with TCAWM and a piecewise linear approximation method is performed for the nonlinear thermodynamic model.The multi-objective optimization model is established by introducing an index reflecting the comfort degree of users,so that the optimal energy usage of the EWH can be obtained by mixed integer linear programming.Testing examples verify the effectiveness of the proposed method.
基金funding through the DFG SFB/Transregio 154, Subprojects A05 and Z01
文摘In this paper,a combined optimization of a coupled electricity and gas system is presented.For the electricity network a unit commitment problem with optimization of energy and reserves under a power pool,considering all system operational and unit technical constraints is solved.The gas network subproblem is a medium-scale mixed-integer nonconvex and nonlinear programming problem.The coupling constraints between the two networks are nonlinear as well.The resulting mixed-integer nonlinear program is linearized with the extended incremental method and an outer approximation technique.The resulting model is evaluated using the Greek power and gas system comprising fourteen gas-fired units under four different approximation accuracy levels.The results indicate the efficiency of the proposed mixed-integer linear program model and the interplay between computational requirements and accuracy.
基金financially supported by National Natural Science Foundation of China(Grant Nos.51372202,51402237,51532003,51602264)State Key Laboratory of Traction Power(Grand No.2015TPL Z01)
文摘The effect of the applied electric field on the conductive behavior of zirconia ceramics is studied by measuring its initial current-voltage curve at various temperatures. The results show that when the field strength is higher than the threshold for flash-sintering, the curves exhibit a nonlinear behavior by having an additional current on top of the linear current according to Ohm's law. Analyzing its transport behavior reveals that the additional current density is due to the extra oxygen vacancies induced by the electric field. The formation rate of the extra vacancies and associated current was related to the field strength.
基金China Postdoctoral Science Foundation(2020TQ0016)National Natural Science Foundation of China(61531003,62201012)。
文摘High-precision time interval measurement is a fundamental technique in many advanced applications,including time and distance metrology,particle physics,and ultra-precision machining.However,many of these applications are confined by the imprecise time interval measurement of electrical signals,restricting the performance of the ultimate system to a few picoseconds,which limits ultrahigh precision applications.Here,we demonstrate an optical means for the time interval measurement of electrical signals that can successfully achieve femtosecond(fs)level precision.The setup is established using the optical frequency comb(OFC)based linear optical sampling(LOS)technique to realize timescale-stretched measurement.We achieve a measurement precision of 82 fs for a single LOS scan measurement and 3.05 fs for the 100-times average with post-processing,which is three orders of magnitude higher than the results of older electrical methods.The high-precision time interval measurement of electrical signals can substantially improve precision measurement technologies.
文摘We conduct a theoretical study on the properties of a bound polaron in a quantum well under an electric field using linear combination operator and unitary transformation methods, which are valid in the whole range of electron-LO phonon coupling. The changing relations between the ground-state energy of the bound polaron in the quantum well and the Coulomb bound potential, the electric field strength, and the well width are derived. The numerical results show that the ground-state energy increases with the increase of the electric field strength and the Coulomb bound potential and decreases as the well width increases.