A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control...A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.展开更多
As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybr...As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.展开更多
A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In ...A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In the first stage, minimal reduced subsets of components, which give full information about the state of the whole system, are generated by determining functional dependencies between components. This is achieved by using a temporal logic proof obligation to check whether the state of all components can be inferred from the state of components in a subset in specified situations that the human operator needs to detect, with respect to a finite state machine model of the system and other human operator behavior. Generation of reduced subsets is automated with the help of a temporal logic model checker. The second stage determines the interconnections between components to be displayed in the reduced system so that the natural overall graphical structure of the system is maintained. A formal definition of an aesthetic for the required subgraph of a graph representation of the full system, containing the reduced subset of components, is given for this purpose. The methodology is demonstrated by a case study.展开更多
In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an...In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.展开更多
Smart grid design and structures are somehow depending on the way of designing and operating Microgrids. In this research a unique design of microgrid is proposed as in medium tension isolated power distribution syste...Smart grid design and structures are somehow depending on the way of designing and operating Microgrids. In this research a unique design of microgrid is proposed as in medium tension isolated power distribution system contains diesel generation unit and photovoltaic generation. Storage system is a part of the control strategy to reduce the diesel usage and to maintain the balance between generation and demand which might be disturbed due to the presence of PV system. Fuzzy logic control scheme has been chosen compared with conventional controller to be the main controller for both the diesel unit and storage system. Promising result has been found by digital simulation using Matlab Simulink proving the possibility of reducing the dependency on fossil fueled generators and increase the utilization of renewable energy.展开更多
The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station ...The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station regulates the supply voltage and frequency without the use of amechanical speed governor. It also assures that energy gained from grid or by the DG set willhave the unity power factor (UPF) when the load is nonlinear. Besides this, the Point of CommonCoupling (PCC) voltage is synchronised with the grid/generator voltage in order to providecontinuous charging. In order to increase the optimal efficiency of the charging stations, thecharging stations will perform the active/reactive power transfer from the vehicle to grid, vehicleto house and vehicle to vehicle (V2V) power transfer. The operational experiment of the chargingstation is simulated and verified by using MATLAB/SIMULINK.展开更多
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad...Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.展开更多
The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc...The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.展开更多
In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gears...In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.展开更多
The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of ele...The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of electric locomotive traction motors,a dynamic fractional-order sliding mode control(DFOSMC)algorithm considering uncertain factors was proposed.A load torque sliding mode observer was designed for the complex load disturbance of the traction motor,and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance.Finally,the stability of the designed controller was proved by Lyapunov's theorem.Besides,the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments.Compared with integer-order sliding mode and fractional-order sliding mode controllers,the dynamic and static performance of the DFOSMC controller with load observation is better,and it has stronger anti-interference ability.The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.展开更多
This paper presents a new application of a genetic-fuzzy control system which controls the input energy to a three phase electric arc furnace. Graphite electrodes are used to convert electrical energy into heat via ph...This paper presents a new application of a genetic-fuzzy control system which controls the input energy to a three phase electric arc furnace. Graphite electrodes are used to convert electrical energy into heat via phase electric arcs. Con-stant arc length is desirable as it implies steady energy transfer from the graphite electrodes to the metallic charge in the furnace bath. With the charge level constantly changing, the electrodes must be able to adjust for the arc length to remain constant. A fuzzy PI controller tuned with genetic algorithms has been developed to be responsible for the ver-tical adjustment of the electrode tip displacement according to specified set-points to ensure that the arc lengths remain as constant as possible. The simulation results show that the system performances are satisfactory using the proposed method.展开更多
With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant...With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.展开更多
Different programming languages can be used for discrete, abstract and process-oriented programming. Depending on the application, there exist additional requirements, which are not fulfilled by every programming lang...Different programming languages can be used for discrete, abstract and process-oriented programming. Depending on the application, there exist additional requirements, which are not fulfilled by every programming language. Flexible programming and maintainability are especially important requirements for process engineers. In this paper, the programming languages Activity Diagram, State Chart Diagram and Sequential Function Chart are compared and evaluated with regard to these requirements. This evaluation is based on the principles of cognitive effectiveness and cognitive dimensions. The aim of this paper is to identify the programming language suited best for controlling sequential processes, e.g. thermomechanical or batch processes.展开更多
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th...Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.展开更多
基金Supported by the National Natural Science Foundation of China(No.81222021,No.30970875,No.90920015,No.61172008 and No.81171423)National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2012BAI34B02)Program for New Century Excellent Talents in University of the Ministry of Education of China(No.NCET-10-0618)
文摘A brain-computer interface(BCI)-based electric wheelchair control system was developed, which enables the users to move the wheelchair forward or backward, and turn left or right without any pre-learning. This control system makes use of the amplitude enhancement of alpha-wave blocking in electroencephalogram(EEG) when eyes close for more than 1 s to constitute a BCI for the switch control of wheelchair movements. The system was formed by BCI control panel, data acquisition, signal processing unit and interface control circuit. Eight volunteers participated in the wheelchair control experiments according to the preset routes. The experimental results show that the mean success control rate of all the subjects was 81.3%, with the highest reaching 93.7%. When one subject's triggering time was 2.8 s, i.e., the flashing time of each cycle light was 2.8 s, the average information transfer rate was 8.10 bit/min, with the highest reaching 12.54 bit/min.
文摘As government agencies continue to tighten emissions regulations due to the continued increase in greenhouse gas production, automotive industries are seeking to produce increasingly efficient vehicle technology. Hybrid electric vehicles (HEVs) have been introduced to mitigate problems while improving fuel economy. HEVs have led to the demand of creating more advanced controls software to consider multiple components for propulsive power in a vehicle. A large section in the software development process is the implementation of an optimal energy management strategy meant to improve the overall fuel efficiency of the vehicle. Optimal strategies can be implemented when driving conditions are known a prior. The Equivalent Consumption Minimization Strategy (ECMS) is an optimal control strategy that uses an equivalence factor to equate electrical to mechanical power when performing torque split determination between the internal combustion engine and electric motor for propulsive and regenerative torque. This equivalence factor is determined from offline vehicle simulations using a sensitivity analysis to provide optimal fuel economy results while maintaining predetermined high voltage battery state of charge (SOC) constraints. When the control hierarchy is modified or different driving styles are applied, the analysis must be redone to update the equivalence factor. The goal of this work is to implement a fuzzy logic controller that dynamically updates the equivalence factor to improve fuel economy, maintain a strict charge sustaining window of operation for the high voltage battery, and reduce computational time required during algorithm development. The adaptive algorithm is validated against global optimum fuel economy and charge sustaining results from a sensitivity analysis performed for multiple drive cycles. Results show a maximum fuel economy improvement of 9.82% when using a mild driving style and a 95% success rate when maintaining an ending SOC within 5% of the desired SOC regardless of starting SOC.
基金This work was supported by the Royal Society in the UK (No.2004R1)An initial study appeared in Proceedings of IEEE International Conference on Systems,Man and Cybernetics,the Hague,Netherlands,pp.124-129,2004.
文摘A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In the first stage, minimal reduced subsets of components, which give full information about the state of the whole system, are generated by determining functional dependencies between components. This is achieved by using a temporal logic proof obligation to check whether the state of all components can be inferred from the state of components in a subset in specified situations that the human operator needs to detect, with respect to a finite state machine model of the system and other human operator behavior. Generation of reduced subsets is automated with the help of a temporal logic model checker. The second stage determines the interconnections between components to be displayed in the reduced system so that the natural overall graphical structure of the system is maintained. A formal definition of an aesthetic for the required subgraph of a graph representation of the full system, containing the reduced subset of components, is given for this purpose. The methodology is demonstrated by a case study.
文摘In this paper, implantation of fuzzy logic controller for parallel hybrid electric vehicles (PHEV) is presented. In PHEV the required torque is generated by a combination of internal-combustion engine (ICE) and an electric motor. The controller simulated using the SIMULINK/MATLAB package. The controller is designed based on the desired speed for driving and the state of speed error. In the other hand, performance of PHEV and ICE under different road cycle is given. The hardware setup is done for electric propulsion system; the system contains the induction motor, the three phase IGBT inverter with control circuit using microcontroller. The closed loop control system used a DC permanent generator whose output voltage is related to motor speed. Comparison between simulation and experimental results show accurate matching.
文摘Smart grid design and structures are somehow depending on the way of designing and operating Microgrids. In this research a unique design of microgrid is proposed as in medium tension isolated power distribution system contains diesel generation unit and photovoltaic generation. Storage system is a part of the control strategy to reduce the diesel usage and to maintain the balance between generation and demand which might be disturbed due to the presence of PV system. Fuzzy logic control scheme has been chosen compared with conventional controller to be the main controller for both the diesel unit and storage system. Promising result has been found by digital simulation using Matlab Simulink proving the possibility of reducing the dependency on fossil fueled generators and increase the utilization of renewable energy.
文摘The main objective of implementing charging stations is to ensure the good charging to theElectric Vehicles by using a solar PV array which is interconnected to the battery energy storagesystems. The charging station regulates the supply voltage and frequency without the use of amechanical speed governor. It also assures that energy gained from grid or by the DG set willhave the unity power factor (UPF) when the load is nonlinear. Besides this, the Point of CommonCoupling (PCC) voltage is synchronised with the grid/generator voltage in order to providecontinuous charging. In order to increase the optimal efficiency of the charging stations, thecharging stations will perform the active/reactive power transfer from the vehicle to grid, vehicleto house and vehicle to vehicle (V2V) power transfer. The operational experiment of the chargingstation is simulated and verified by using MATLAB/SIMULINK.
基金863 National Project EQ7200HEV hybridelectric vehicle (2001AA501200,2003AA501200)
文摘Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.
基金the National High Technology Development of China to R & D EV Project(863-2001AA501213)
文摘The Hierarchical Structure Fuzzy Logic Control (HSFLC) strategies of torque distribute for Parallel Hybrid Electric Vehicle (PHEV) in the mode of operation of the vehicle i. e. , acceleration, cruise, deceleration etc. have been studied. Using secondly developed the hybrid vehicle simulation tool ADVISOR, the dynamic model of PHEV has been set up by MATLAB/SIMULINK. The engine, motor as well as the battery characteristics have been studied. Simulation results show that the proposed hierarchical structured fuzzy logic control strategy is effective over the entire operating range of the vehicle in terms of fuel economy. Based on the analyses of the simulation results and driver’s experiences, a fuzzy controller is designed and developed to control the torque distribution. The controller is evaluated via hardware-in-the-loop simulator (HILS). The results show that controller verify its value.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2001AA501200, 2003AA501200).
文摘In parallel hybrid electrical vehicle (PHEV) equipped with automatic mechanical transmission (AMT), the driving smoothness and the clutch abrasion are the primary considerations for powertrain control during gearshift and clutch operation. To improve these performance indexes of PHEV, a coordinated control system is proposed through the analyzing of HEV powertrain dynamic characteristics. Using the method of minimum principle, the input torque of transmission is optimized to improve the driving smoothness of vehicle. Using the methods of fuzzy logic and fuzzy-PID, the engaging speed of clutch and the throttle opening of engine are manipulated to ensure the smoothness of clutch engagement and reduce the abrasion of clutch friction plates. The motor provides the difference between the required input torque of transmission and the torque transmitted through clutch plates. Results of simulation and experiments show that the proposed control strategy performs better than the contrastive control system, the smoothness of driving and the abrasion of clutch can be improved simultaneously.
基金National Natural Science Foundation of China(No.51867012)。
文摘The harsh operating environment and complex operating conditions of the mine electric locomotive affect the control performance of the locomotive traction motor.In order to improve the speed control performance of electric locomotive traction motors,a dynamic fractional-order sliding mode control(DFOSMC)algorithm considering uncertain factors was proposed.A load torque sliding mode observer was designed for the complex load disturbance of the traction motor,and its observations were integrated into the DFOSMC controller to overcome the influence of load disturbance.Finally,the stability of the designed controller was proved by Lyapunov's theorem.Besides,the control performance of DFOSMC controller was compared with integer-order sliding mode controller and fractional-order sliding mode controller through simulation experiments.Compared with integer-order sliding mode and fractional-order sliding mode controllers,the dynamic and static performance of the DFOSMC controller with load observation is better,and it has stronger anti-interference ability.The DFOSMC controller effectively improves the control performance of the traction motor of the mining locomotive.
文摘This paper presents a new application of a genetic-fuzzy control system which controls the input energy to a three phase electric arc furnace. Graphite electrodes are used to convert electrical energy into heat via phase electric arcs. Con-stant arc length is desirable as it implies steady energy transfer from the graphite electrodes to the metallic charge in the furnace bath. With the charge level constantly changing, the electrodes must be able to adjust for the arc length to remain constant. A fuzzy PI controller tuned with genetic algorithms has been developed to be responsible for the ver-tical adjustment of the electrode tip displacement according to specified set-points to ensure that the arc lengths remain as constant as possible. The simulation results show that the system performances are satisfactory using the proposed method.
文摘With penetration growing of renewable energy sources which integrated into power system have caused problems on grid stability. Electric Vehicles (EV) are one of the renewable energy sources that can bring significant impacts to power system during their charging and discharging operations. This article established a model of single machine infinite bus (SMIB) power system considering EV as a case study of load disturbance for power system oscillation. The objective of this research is to enhance stability and overcome the drawbacks of traditional control algorithms such as power system stabilizer (PSS), PID controller and fuzzy logic controller (FLC). The implementation’s effect of FLC parallel with PID controller (Fuzzy-PID) has been shown in this paper. The speed deviation (?ω) and electrical power (Pe) are the important factors to be taken into consideration without EV (only change in mechanical torque), EV with change in the mechanical torque and sudden plug-in EV. The obtained result by nonlinear simulation using Matlab/Simulink of a SMIB power system with EV has shown the effectiveness of using (Fuzzy-PID) against all disturbances.
文摘Different programming languages can be used for discrete, abstract and process-oriented programming. Depending on the application, there exist additional requirements, which are not fulfilled by every programming language. Flexible programming and maintainability are especially important requirements for process engineers. In this paper, the programming languages Activity Diagram, State Chart Diagram and Sequential Function Chart are compared and evaluated with regard to these requirements. This evaluation is based on the principles of cognitive effectiveness and cognitive dimensions. The aim of this paper is to identify the programming language suited best for controlling sequential processes, e.g. thermomechanical or batch processes.
基金supported by National Development and Reform Commission of China (Grant No. 2005934)
文摘Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.