期刊文献+
共找到24篇文章
< 1 2 >
每页显示 20 50 100
Improving the electrical performances of InSe transistors by interface engineering
1
作者 曹天俊 郝松 +5 位作者 吴晨晨 潘晨 戴玉頔 程斌 梁世军 缪峰 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期153-158,共6页
InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hinder... InSe has emerged as a promising candidate for next-generation electronics due to its predicted ultrahigh electrical performance.However,the efficacy of the InSe transistor in meeting application requirements is hindered due to its sensitivity to interfaces.In this study,we have achieved notable enhancement in the electrical performance of InSe transistors through interface engineering.We engineered an InSe/h-BN heterostructure,effectively suppressing dielectric layer-induced scattering.Additionally,we successfully established excellent metal-semiconductor contacts using graphene ribbons as a buffer layer.Through a methodical approach to interface engineering,our graphene/InSe/h-BN transistor demonstrates impressive on-state current,field-effect mobility,and on/off ratio at room temperature,reaching values as high as 1.1 mA/μm,904 cm^(2)·V^(-1)·s^(-1),and>10~6,respectively.Theoretical computations corroborate that the graphene/InSe heterostructure shows significant interlayer charge transfer and weak interlayer interaction,contributing to the enhanced performance of InSe transistors.This research offers a comprehensive strategy to elevate the electrical performance of InSe transistors,paving the way for their utilization in future electronic applications. 展开更多
关键词 two-dimensional materials INSE van der Waals heterostructure electrical performances charge density difference
下载PDF
Comparison of neutron irradiation effects on the electrical performances of SiGe HBT and SiBJT 被引量:4
2
作者 MENGXiangti WANGRuipian +3 位作者 KANGAiguo WANGJilin JIAHongyong CHENPe 《Rare Metals》 SCIE EI CAS CSCD 2003年第1期69-74,共6页
The change of electrical performances of silicon-germanium (SiGe)heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied as afunction of reactor fast neutron radiation fluence. Alt... The change of electrical performances of silicon-germanium (SiGe)heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied as afunction of reactor fast neutron radiation fluence. Alter neutron irradiation, the collector currentI_c and the current gain beta decrease, and the base current I_b increases generally for SiGe HBT.The higher the neutron irradiation fluence is, the larger I_b increases. For conventional Si BJT,I_c and I_b increase as well as beta decreases much larger than SiGe HBT at the same fluence. It isshown that SiGe HBT has a larger anti-radiation threshold and better anti-radiation performance thanSi BJT. The mechanism of performance changes induced by irradiation was preliminarily discussed. 展开更多
关键词 semiconductor technology SiGe HBT neutron irradiation Si BJT electrical performance
下载PDF
Direct Yaw Moment Control for Distributed Drive Electric Vehicle Handling Performance Improvement 被引量:29
3
作者 YU Zhuoping LENG Bo +2 位作者 XIONG Lu FENG Yuan SHI Fenmiao 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第3期486-497,共12页
For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A... For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved. 展开更多
关键词 direct yaw moment control distributed drive electric vehicle handling performance improvement state feedback control
下载PDF
Electrical Performance of Electron Irradiated SiGe HBT and Si BJT
4
作者 WentaoHUANG JilinWANG +3 位作者 ZhinongLIU PeiyiCHEN PeihsinTSIEN XiangtiMENG 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2004年第6期706-708,共3页
The change of electrical performances of 1 MeV electron irradiated silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied. After electron irradiation, bot... The change of electrical performances of 1 MeV electron irradiated silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) and Si bipolar junction transistor (BJT) was studied. After electron irradiation, both the collector current IC and the base current IB changed a little, and the current gain β decreased a little for SiGe HBT. The higher the electron irradiation fluence was, the lower the IC decreased. For conventional Si BJT, IC and IB increased as well as /? decreased much larger than SiGe HBT under the same fluence. The contribution of IB was more important to the degradation of β for both SiGe HBT and Si BJT. It was shown that SiGe HBT had a larger anti-radiation threshold and better anti-radiation performance than Si BJT. The mechanism of electrical performance changes induced by irradiation was preliminarily discussed. 展开更多
关键词 Electron irradiation SiGe HBT Si BJT electrical performance
下载PDF
Thermal Distortion Compensation for Improving Electrical Performance of Reflector Antennas
5
作者 Jiamei Kang Wei Wang +2 位作者 Shuo Zhang Shaofan Lian Hong Bao 《Open Journal of Applied Sciences》 2021年第4期523-540,共18页
Aiming at the problem of the surface accuracy and electrical performance of the antenna in space environment are reduced due to thermal deformation caused by temperature load. This paper presents a method to compensat... Aiming at the problem of the surface accuracy and electrical performance of the antenna in space environment are reduced due to thermal deformation caused by temperature load. This paper presents a method to compensate the thermally induced shape distortion of antenna reflector by actively adjusting actuators in order to improve the electrical performance. The adjustment of each actuator is related to the local deformation of the panel. Then, taking a space deployable antenna with a diameter of 5 meters as an example, the finite element model is established. According to the range of the temperature variation in space (<span style="white-space:nowrap;">&#8722;</span>180<span style="white-space:nowrap;">&#176;</span>C - 200<span style="white-space:nowrap;">&#176;</span>C), different temperature loads are applied to the antenna. The variation of electrical properties and surface accuracy is analyzed and the worst working condition is determined, and the antenna is compensated based on this condition. Then, four different electrical performance parameters are used as the optimization objectives, and the electromechanical coupling optimization model is established, and the PSO algorithm is used to optimize the actuators adjustments. The results show that the method can effectively improve the electrical performance of the deformed reflector antenna. 展开更多
关键词 Space Reflector Antenna Thermal Distortion Active Compensation electrical performance PSO
下载PDF
Financial Performance of Northeast China Electric Power Croup Corporation
6
《Electricity》 1997年第2期8-9,共2页
关键词 Financial performance of Northeast China electric Power Croup Corporation
下载PDF
Design,preparation,and characterization of a novel ZnO/CuO/Al energetic diode with dual functionality:Logic and destruction
7
作者 Jialu Yang Jiaheng Hu +3 位作者 Yinghua Ye Jianbing Xu Yan Hu Ruiqi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第4期57-68,共12页
Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemi... Self-destructing chips have promising applications for securing data.This paper proposes a new concept of energetic diodes for the first time,which can be used for self-destructive chips.A simple two-step electrochemical deposition method is used to prepare ZnO/CuO/Al energetic diode,in which N-type ZnO and P-type CuO are constricted to a PN junction.This paper comprehensively discusses the material properties,morphology,semiconductor characteristics,and exploding performances of the energetic diode.Experimental results show that the energetic diode has typical rectification with a turn-on voltage of about 1.78 V and a reverse leakage current of about 3×10^(-4)A.When a constant voltage of 70 V loads to the energetic diode in the forward direction for about 0.14 s or 55 V loads in the reverse direction for about 0.17 s,the loaded power can excite the energetic diode exploding and the current rises to about100 A.Due to the unique performance of the energetic diode,it has a double function of rectification and explosion.The energetic diode can be used as a logic element in the normal chip to complete the regular operation,and it can release energy to destroy the chip accurately. 展开更多
关键词 Energetic diode ZnO—CuO—Al thermite ZnO/CuO PN junction electrical explosion performance Self-destructing chips
下载PDF
Performance improvement of continuous carbon nanotube fibers by acid treatment 被引量:1
8
作者 张强 李克伟 +8 位作者 范庆霞 夏晓刚 张楠 肖卓建 周文斌 杨丰 王艳春 刘华平 周维亚 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第2期523-528,共6页
Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images an... Continuous CNT fibers have been directly fabricated in a speed of 50 m/h-400 m/h,based on an improved chemical vapor deposition method.As-prepared fibers are further post-treated by acid.According to the SEM images and Raman spectra,the acid treatment results in the compaction and surface modification of the CNTs in fibers,which are beneficial for the electron and load transfer.Compared to the HNO3 treatment,HClSO_3 or H_2SO_4 treatment is more effective for the improvement of the fibers' properties.After HCISO_3 treatment for 2 h,the fibers' strength and electrical conductivity reach up to-2 GPa and-4.3 MS/m,which are promoted by-200%and almost one order of magnitude than those without acid treatment,respectively.The load-bearing status of the CNT fibers are analyzed based on the downshifts of the G' band and the strain transfer factor of the fibers under tension.The results reveal that acid treatment could greatly enhance the load transfer and inter-bundle strength.With the HCISO3 treatment,the strain transfer factor is enhanced from-3.9%to-53.6%. 展开更多
关键词 carbon nanotube fiber electrical conductivity mechanical property performance improvement
下载PDF
Performance of LSCM-CDC Composite Anode for ITSOFC
9
作者 马学菊 陈秀华 +1 位作者 马文会 戴永年 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期391-394,共4页
It was prepared by glycine-nitrate process (GNP) method for a novel composite material La0.7Sr0.3Cr0.5Mn0.5O3-δ-Ce0.8Ca0.2O2-δ (LSCM-CDC) used for anode of intermediate temperature solid oxide fuel cell (ITSOFC). Th... It was prepared by glycine-nitrate process (GNP) method for a novel composite material La0.7Sr0.3Cr0.5Mn0.5O3-δ-Ce0.8Ca0.2O2-δ (LSCM-CDC) used for anode of intermediate temperature solid oxide fuel cell (ITSOFC). The microstructure and properties of composite anode LSCM-CDC were measured via X-ray diffraction (XRD), scanning electron microscopy (SEM), AC impedance and four-probe direct current methods. Fluorite-perovskite compounded phase structure was obtained after being sintered at 1400 ℃ for 15 h, the optimum composition of the composite anode of LSCM and CDC was 7 to 3 at molar ratio. At 850 ℃, the electronic conductivity was 6.49 S·cm-1 in air and 1 S·cm-1 in the reduction atmosphere, respectively. The AC impedance spectra with two arcs showed that LSCM-CDC had low ionic conductivity, which was about two orders of magnitude lower than the electronic conductivity. LSCM-CDC composite anode was stable under different temperatures in pure methane gas with good catalytic performance, which indicated that the composite was a promising anode for ITSOFC. 展开更多
关键词 ITSOFC LSCM-CDC anode material electrical performance rare earths
下载PDF
Surface-induced Microstructure and Performance Changes in P3HT Ultrathin Films
10
作者 Hong-Tao Shan Jia-Xin He +4 位作者 Bing-Yan Zhu Xue-Ting Cao Ying-Ying Yan Jian-Jun Zhou Hong Huo 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第6期805-814,共10页
In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and ... In this work,poly(3-hexylthiophene)(P3HT)ultrathin films(P3HT-T)were prepared by spin-coating a dilute P3HT solution(in a toluene:o-dichlorobenzene(Tol:ODCB)blend with a volume ratio of 80:20)with ultrasonication and the addition of the nucleating agent bicycle[2.2.1]heptane-2,3-dicarboxylic acid disodium salt(HPN-68L)on glass,Si wafers and indium tin oxide(ITO)substrates.The electrical and mechanical properties of the P3HT-T ultrathin films were investigated,and it was found that the conductivity and crack onset strain(COS)were simultaneously improved in comparison with those of the corresponding pristine P3HT film(P3HT-0,without ultrasonication and nucleating agent)on the same substrate,regardless of what substrate was used.Moreover,the conductivity of P3HT-T ultrathin films on different substrates was similar(varying from 3.7 S·cm^(-1)to 4.4 S·cm^(-1)),yet the COS increased from 97%to 138%by varying the substrate from a Si wafer to ITO.Combining grazing-incidence wide-angle X-ray diffraction(GIXRD),UV-visible(UV-Vis)spectroscopy and atomic force microscopy(AFM),we found that the solid order and crystallinity of the P3HT-T ultrathin film on the Si wafer are highest,followed by those on glass,and much lower on ITO.Finally,the surface energy and roughness of three substrates were investigated,and it was found that the polar component of the surface energyγp plays a critical role in determining the crystalline microstructures of P3HT ultrathin films on different substrates.Our work indicates that the P3HT ultrathin film can obviously improve the stretchability and simultaneously retain similar electrical performance when a suitable substrate is chosen.These findings offer a new direction for research on stretchable CP ultrathin films to facilitate future practical applications. 展开更多
关键词 P3HT ultrathin film Substrate Crystalline microstructures Polar component of the surface energy electrical and stretchable performances
原文传递
Radiation-hardened property of single-walled carbon nanotube film-based field-effect transistors under low-energy proton irradiation 被引量:2
11
作者 Xiaorui Zhang Huiping Zhu +12 位作者 Song’ang Peng Guodong Xiong Chaoyi Zhu Xinnan Huang Shurui Cao Junjun Zhang Yunpeng Yan Yao Yao Dayong Zhang Jingyuan Shi Lei Wang Bo Li Zhi Jin 《Journal of Semiconductors》 EI CAS CSCD 2021年第11期18-25,共8页
Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work comb... Strong C-C bonds,nanoscale cross-section and low atomic number make single-walled carbon nanotubes(SWCNTs)a potential candidate material for integrated circuits(ICs)applied in outer space.However,very little work combines the simulation calculations with the electrical measurements of SWCNT field-effect transistors(FETs),which limits further understanding on the mechanisms of radiation effects.Here,SWCNT film-based FETs were fabricated to explore the total ionizing dose(TID)and displacement damage effect on the electrical performance under low-energy proton irradiation with different fluences up to 1×1015 p/cm2.Large negative shift of the threshold voltage and obvious decrease of the on-state current verified the TID effect caused in the oxide layer.The stability of the subthreshold swing and the off-state current reveals that the displacement damage caused in the CNT layer is not serious,which proves that the CNT film is radiation-hardened.Specially,according to the simulation,we found the displacement damage caused by protons is different in the source/drain contact area and channel area,leading to varying degrees of change for the contact resistance and sheet resistance.Having analyzed the simulation results and electrical measurements,we explained the low-energy proton irradiation mechanism of the CNT FETs,which is essential for the construction of radiation-hardened CNT film-based ICs for aircrafts. 展开更多
关键词 SWCNT FETs low-energy proton irradiation radiation effects electrical performance TID effect displacement damage effect simulation
下载PDF
A reusable planar triggered spark-gap switch batched-fabricated with PCB technology for medium- and low-voltage pulse power systems 被引量:2
12
作者 Zhi Yang Ke Wang +5 位作者 Peng Zhu Peng Liu Qiu Zhang Cong Xu Hao-tian Jian Rui-qi Shen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1572-1578,共7页
Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in... Triggered spark-gap switch is a popular discharge switch for pulse power systems.Previous studies have focused on planarizing this switch using thin film techniques in order to meet the requirements of compact size in the systems.Such switches are one-shot due to electrodes being too thin to sufficiently resist spark-erosion.Additionally,these switches did not employ any structures in securing internal gas composition,resulting in inconsistent performance under harsh atmospheres.In this work,a novel planar triggered spark-gap switch(PTS)with a hermetically sealed cavity was batched-prepared with printed circuit board(PCB)technology,to achieve reusability with low cost.The proposed PTS was inspected by micro-computed tomography to ensure PCB techniques meet the requirements of machining precision.The results from electrical experiments demonstrated that PCB PTS were consistent and reusable with lifespan over 20 times.The calculated switch voltage and circuit current were consistent with those derived from real-world measurements.Finally,PCB PTS was used to introduce hexanitrostilbene(HNS)pellets in a pulse power system to verify its performance. 展开更多
关键词 Pulse power systems Printed circuit board technology Triggered spark-gap switch Planar discharge switch electrical performance
下载PDF
Optimal use of mobile cooling units in a deep-level gold mine 被引量:1
13
作者 H.J.van Staden J.F.van Rensburg H.J.Groenewald 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第4期547-553,共7页
The South African gold mining sector remains a significant contributor to the country’s economy.Facing several challenges that hinder the realisation of South Africa’s full mineral potential,the sector’s sustainabi... The South African gold mining sector remains a significant contributor to the country’s economy.Facing several challenges that hinder the realisation of South Africa’s full mineral potential,the sector’s sustainability and profitability can be enhanced through implementing operational improvement measures.Mobile cooling units(MCUs)were identified as a potential focus area for operational improvement.MCUs are used as tertiary or in-stope cooling in hot underground workings.In this paper,a method was presented to characterise the performance of existing MCUs based on three key performance indicators(KPIs),namely,the wet-bulb temperature ratio(WTR),efficiency and position.Optimisation strategies were then elected and implemented based on these KPIs.The implementation of this method in a South African gold mine attained a reduction in pumped water volumes,reduced operating costs through electricity cost savings and improvements in underground ventilation air temperatures. 展开更多
关键词 Mobile cooling units Optimisation Mine cooling performance electricity cost savings Spot cooling
下载PDF
Electrical and thermal performances of photovoltaic/thermal systems with magnetic nanofluids:A review
14
作者 Innocent Nkurikiyimfura Yanmin Wang +1 位作者 Bonfils Safari Emmanuel Nshingabigwi 《Particuology》 SCIE EI CAS CSCD 2021年第1期181-200,共20页
Enhancing solar photovoltaic and thermal conversion performances may help develop more environmentally friendly hybrid photovoltaic/thermal(PV/T)systems that can be used in applications ranging from household to indus... Enhancing solar photovoltaic and thermal conversion performances may help develop more environmentally friendly hybrid photovoltaic/thermal(PV/T)systems that can be used in applications ranging from household to industrial scales.Owing to their enhanced thermal and optical properties,nanofluids have proven to be good candidates for designing PV/T systems with superior performances.As smart nanofluids,magnetic nanofluids(MNFs)can further enhance the performances of PV/T systems under external magnetic fields.This paper reviews recent developments in enhancing the electrical and thermal performances of PV/T systems using magnetic nanofluids.Various parameters affecting the performances are highlighted,and some areas for further investigations are discussed.The reviewed literature shows that PV/T systems with MNFs are promising.However,their performances need further investigation before they can be used in applications. 展开更多
关键词 Magnetic nanofluids Photovoltaic/thermal systems Heat transfer enhancement Magnetic field electrical and thermal performances Solar energy
原文传递
Mechanical Integrity and Failure Analysis of Photovoltaic Modules under Simulated Snow Loads Using Pneumatic Airbag Setup
15
作者 Nouman Ali Shah Rizwan M. Gul Zafar Hayat Khan 《Journal of Power and Energy Engineering》 2022年第1期1-13,共13页
Photovoltaic (PV) modules have emerged as an ideal technology of choice for <span>harvesting vastly available renewable energy resources. However, the effi</span>ciency <span>of PV modules remains si... Photovoltaic (PV) modules have emerged as an ideal technology of choice for <span>harvesting vastly available renewable energy resources. However, the effi</span>ciency <span>of PV modules remains significantly lower than that of other renewable</span> energy sources such as wind and hydro. One of the critical elements affecting a photovoltaic module’s efficiency is the variety of external climatic conditions under which it is installed. In this work, the effect of simulated snow loads was evaluated on the performance of PV modules with different <span>types of cells and numbers of busbars. According to ASTM-1830 and IEC-1215</span> standards, a load of 5400 Pa was applied to the surface of PV modules for 3 hours. An indigenously developed pneumatic airbag test setup was used for the uniform application of this load throughout the test, which was validated by load cell and pressure gauge. Electroluminescence (EL) imaging and solar flash tests were performed before and after the application of load to characterize the performance and effect of load on PV modules. Based on these tests, the maxi<span>mum power output, efficiency, fill factor and series resistance were deter</span>mined. The results show that polycrystalline modules are the most likely to withstand the snow loads as compared to monocrystalline PV modules. A maximum drop of 32.13% in the power output and a 17.6% increase in series resistance were observed in the modules having more cracks. These findings demonstrated the efficacy of the newly established test setup and the potential of snow loads for reducing the overall performance of PV module. 展开更多
关键词 Photovoltaic Modules Pneumatic Testing Setup Mechanical Integrity Electroluminescence Testing electrical performance
下载PDF
Gradient CNT/PVDF piezoelectric composite with enhanced force-electric coupling for soccer training
16
作者 Wanghong Zeng Weili Deng +7 位作者 Tao Yang Shenglong Wang Yue Sun Jieling Zhang Xiarong Ren Long Jin Lihua Tang Weiqing Yang 《Nano Research》 SCIE EI CSCD 2023年第8期11312-11319,共8页
Real-time monitoring of ball–shoe interactions can provide essential information for high-quality instruction in personalized soccer training,yet existing monitoring systems struggle to reflect specific forces,loci,a... Real-time monitoring of ball–shoe interactions can provide essential information for high-quality instruction in personalized soccer training,yet existing monitoring systems struggle to reflect specific forces,loci,and durations of action.Here,we design a self-powered piezoelectric sensor constructed by the gradient carbon nanotube/polyvinylidene fluoride(CNT/PVDF)composite to monitor the interactions between the ball and the shoe.Two-dimensional Raman mapping demonstrates the gradient structure of CNT/PVDF prepared by programmable electrospinning combined with a hot pressing.Benefitting from the synergistic effect of local polarization caused by the enrichment of CNT and the reduced diffusion of silver patterns in gradient structure,the as-prepared composite exhibits enhanced force-electric coupling with an excellent sensitivity of 80 mV/N and durability over 15,000 cycles.On this basis,we conformally attach a 3×3 sensor array to a soccer shoe,enabling real-time acquisition of kick position and contact force,which could provide quantitative assessment and personalize guidance for the training of soccer players.This self-powered piezoelectric sensor network system offers a promising paradigm for wearable monitoring under strong impact forces. 展开更多
关键词 mechanical and electrical performance pressure sensor carbon nanotube/polyvinylidene fluoride(CNT/PVDF)composite soccer training
原文传递
Progress in research on ice accretions on overhead transmission lines and its influence on mechanical and insulating performance 被引量:2
17
作者 Shaohua WANG Xingliang JIANG 《Frontiers of Electrical and Electronic Engineering in China》 CSCD 2012年第3期326-336,共11页
Atmospheric ice accretion on transmission lines is of great danger to the security of service of electrical power system. This paper reviews the progress in research dealing with the formation of ice accretions on tra... Atmospheric ice accretion on transmission lines is of great danger to the security of service of electrical power system. This paper reviews the progress in research dealing with the formation of ice accretions on transmission lines and the effects of ice on the mechanical and electrical performance of transmission lines. The results show that ice accretions on transmission lines can be categorized into five types: glaze, hard rime, soft rime, hoar frost, and snow and sleet. In all types of ice accretions, glaze grown in a wet regime is of the greatest danger to the transmission lines. Meteorological conditions, terrain and geographic conditions, and some other factors significantly influence the ice accumulation speed and the ice amount. Drastic decrease of mechanical property and electric property as a result of severe icing is the main reason for ice accidents. The amount of ice, the asymmetrical ice accretion, and the asynchronous ice shedding can considerably change the conductor strain, conductor sag, variation amount of the span, displacement of the insulator string, and the tension difference. The amount and type of ice, the uniformity of ice accumulation, and the con- ductivity of freezing water have significant influence on the flashover voltage of ice-covered insulators. 展开更多
关键词 transmission lines ICING mechanical perfor-mance electrical performance
原文传递
Grain boundary engineering of organic semiconductor films in organic transistors
18
作者 Yanpeng Wang Shougang Sun +9 位作者 Yinan Huang Yao Fu Jiannan Qi Kai Tie Zhongwu Wang Fei Jiao Rongmei Si Xiaosong Chen Liqiang Li Wenping Hu 《Aggregate》 EI CAS 2023年第6期27-43,共17页
Organicfield-effect transistors(OFETs)show great application potential in organic electronic and optoelectronicfields due to their excellent mechanicalflexibility,low cost,and solution processing.However,grain boundaries... Organicfield-effect transistors(OFETs)show great application potential in organic electronic and optoelectronicfields due to their excellent mechanicalflexibility,low cost,and solution processing.However,grain boundaries(GBs)disrupt the aggrega-tion state of organic semiconductor(OSC)films and hinder electrical performance and stability,which limits the application of OFETs.Besides,the sensitive nature of GBs is widely used in sensing,but detailed descriptions of the GBs are scarce.This review aims tofill this knowledge gap.The role of GBs and their effect on the per-formance and stability of OFETs are analyzed,followed by a detailed summary of the characterization of GBs.Then,strategies for suppressing the negative effects of GBs and utilizing the sensitive nature of GBs for application are proposed.Finally,potential research directions for GBs in OFETs are discussed. 展开更多
关键词 aggregation states electrical performance grain boundaries organic field-effect transistors organic semiconductors STABILITY
原文传递
Electroactive Shape Memory Cyanate/Polybutadiene Epoxy Composites Filled with Carbon Black 被引量:7
19
作者 Kun Wang 朱光明 +2 位作者 Xiao-gang Yan Fang Ren Xiao-ping Cui 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2016年第4期466-474,共9页
Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis ... Electroactive shape memory composites were synthesized using polybutadiene epoxy (PBEP) and bisphenol A type cyanate ester (BACE) filled with different contents of carbon black (CB). Dynamic mechanical analysis (DMA), scanning electron microscopy (SEM), electrical performance and electroactive shape memory behavior were systematically investigated. It is found that the volume resistivity decreased due to excellent electrical conductivity of CB, in turn resulting in good electroactive shape memory properties. The content of CB and applied voltage had significant influence on electroactive shape memory effect of developed BACE/PBEP/CB composites. Shape recovery can be observed within a few seconds with the CB content of 5 wt% and voltage of 60 V. Shape recovery time decreased with increasing content of CB and voltage. The infrared thermometer revealed that the temperature rises above the glass transition temperature faster with the increase of voltage and the decrease of resistance. 展开更多
关键词 Electroactive shape memory behaviors Cyanate ester Carbon black electrical performance.
原文传递
On the Use of Nanofluids in Solar Energy Applications 被引量:3
20
作者 CUCE Erdem CUCE Pinar Mert +1 位作者 GUCLU Tamer BESIR Ahmet Burhaneddin 《Journal of Thermal Science》 SCIE EI CAS CSCD 2020年第3期513-534,共22页
Renewable energy technologies are in the centre of interest to narrow the gap between fossil fuels and clean energy systems.The dominant role of solar energy systems among the alternatives is beyond question owing to ... Renewable energy technologies are in the centre of interest to narrow the gap between fossil fuels and clean energy systems.The dominant role of solar energy systems among the alternatives is beyond question owing to being associated with an infinite energy source,well-documented theory,simplicity,eco-friendly structure and notably higher energy and exergy efficiency range compared to other renewables.However,in solar energy systems,conventional working fluids with poor thermophysical properties are still utilised.In other words,further improvements are still available in the said systems by the use of unique nanoparticles with superior thermal,electrical,optical and mechanical properties.Within the scope of this research,the applications of nanofluids in various solar energy systems such as tracking and non-tracking solar collectors,photovoltaic/thermal systems,solar thermoelectric devices,solar stills,solar thermal energy storage systems,solar greenhouses and solar ponds are comprehensively analysed.Relevant comparisons and discussions are proposed for the potential impacts of various nanofluids on coefficient of performance(COP)and thermodynamic performance figures of solar energy systems such as energy and exergy efficiency,effectiveness and productivity.Some challenges of nanofluids are also addressed which need to be resolved in further works. 展开更多
关键词 nanofluids solar energy applications thermal and electrical performance COP COST
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部