This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ...This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.展开更多
In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pu...In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.展开更多
Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, th...Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.展开更多
Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but t...Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.展开更多
Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into batter...Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.展开更多
The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-...The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.展开更多
Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is ad...Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.展开更多
Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the brakin...Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.展开更多
A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient...A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.展开更多
The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of r...The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of regenerative braking torque is proposed with the premise that the braking intensity required by the driver is satisfied. On this basis, factors that affect torque generated by the motor are listed, and how the battery' s temperature and state of charge ( SOC ) restrict and correct the braking torque is expounded. Finally, road test results show that the motor' s constant power or constant torque control is an effective way to recover the mechanical energy during decelerating.展开更多
Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and ...Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.展开更多
The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV...The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV cells. It is from this perspective that it seems judicious to us to study the simultaneous influence of the heating of the base and an external electric field on the performance of a PV cell under intense illumination of 50 suns. Two phenomena contribute to the heating of the base of a PV cell which is heating due to the transfer by conduction of solar radiation energy received by the surface of the PV cell and the heat generated inside the PV cell by various phenomena linked to the movement of photogenerated charged carriers. In this study, we take into account the heating linked to the movement of the charged carriers in the base. After a mathematical modeling of the PV cell considered, some hypotheses are formulated and the expressions of the electrical parameters are established as a function of the electric field and base temperature. Subsequently, we use numerical simulation to highlight the behavior of theses parameters as a function of temperature and of the intensity of the electric field. The results show that for any given temperature, the orientation of the electric field as considered in our work improves the performance of the PV cell while high temperatures degrade these performances. Furthermore, the analysis of the curves shows that the harmful effect of temperature on the performance of a PV cell is more accentuated at large values of electric field.展开更多
In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative bra...In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.展开更多
To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-r...To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-regressive with auxiliary input) model, ARMAX (auto-regressive moving average with auxiliary input) model, and NNARMAX (neural network ARMAX) model. By system identification, the ARX(3,4,2), ARX(4,4,2), ARMAX(3,3,1,1), and ARMAX(4,4,3,2) models are derived. Validation results show that the four-order ARMAX model and the NNARMAX model better simulate the actuator of the EPB.展开更多
Facing the increasingly serious environmental pollution and oil crisis,the development of automobile industry is facing a very serious challenge.For the sustainable development of automobile industry,the electric vehi...Facing the increasingly serious environmental pollution and oil crisis,the development of automobile industry is facing a very serious challenge.For the sustainable development of automobile industry,the electric vehicle using motor as driving equipment can realize“pollution-free”,which has become the focus of automobile research and development in many countries.In the research and development of electric vehicles,the electric vehicles driven by electric wheels have attracted the attention of all walks of life because of their ideal control characteristics and broad application prospects.In this paper,the electric wheel drive vehicle as the research object,the electromechanical composite brake control system is studied and analyzed.展开更多
This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed...This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.展开更多
A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, com...A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.展开更多
Coasting in gear is a common driving mode for the conventional vehicle equipped with the internal combustion engine(ICE), and the assistant braking function of ICE is utilized to decelerate the vehicle in this mode....Coasting in gear is a common driving mode for the conventional vehicle equipped with the internal combustion engine(ICE), and the assistant braking function of ICE is utilized to decelerate the vehicle in this mode. However, the electric vehicle(EV) does not have this feature in the coasting mode due to the relatively small inertia of the driving motor, so it will cause the driver cannot obtain the similar driving feeling to that of the conventional vehicle, and even a traffic accident may occur if the driver cannot immediately adapt to the changes. In this paper, the coasting control for EV is researched based on the driving feeling. A conventional vehicle equipped with continuously variable transmission(CVT) is taken as the reference vehicle, and the combined simulation model of EV is established based on AVL CRUISE and MATLAB/Simulink. The torque characteristic of the CVT output shaft is measured in coasting mode, and the data are smoothed and fitted to a polynomial curve. For the EV in coasting mode, if the state of charge(SOC) of the battery is below 95%, the polynomial curve is used as the control target for the torque characteristic of the driving motor, otherwise, the required torque is replaced by hydraulic braking torque to keep the same deceleration. The co-simulation of Matlab/Simulink/Stateflow and AVL CRUISE, as well as the hardware-in-loop experiment combined with d SPACE are carried out to verify the effectiveness and the real-time performance of the control algorithm. The results show that the EV with coasting braking control system has similar driving feeling to that of the reference vehicle, meanwhile, the battery SOC can be increased by 0.036% and 0.021% in the initial speed of 100 km/h and 50 km/h, respectively. The proposed control algorithm for EV is beneficial to improve the driving feeling in coasting mode, and it also makes the EV has the assistant braking function.展开更多
Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for...Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for train to train rescue.In this paper,the longitudinal train dynamics of electric multiple units under rescue were analyzed by field and laboratory tests.The angling behavior of the brakinginduced coupler under compressed in-train forces was analyzed.A dynamic model for the train and draft gear system was developed considering accurate boundary limitations and braking characteristics.The safety indices and their limits for the coupled rescue train were defined.Thedynamic evaluations of different train to train rescue scenarios were analyzed.It is indicated that the coupler vertical rotation occurs during the emergency braking applied by the assisting train.The vertical force components of intrain forces lead to the carbody pitch behavior and even cause local destructions to the coupler system.The carbody pitch motion can arise the inference of in-train devices.Based on the safety evaluation of train and coupler system,the regulations for typical train to train rescue scenarios were formulated.展开更多
In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was des...In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was designed to control the slip and its effectiveness was proved.A hardware-in-loop simulation through MATLAB/XPC was compared with the normal SMC and normal integral sliding mode controller(ISMC),the results show that SMC with the auxiliary system has a better performance:a smaller overshoot and steady state error.The disturbance is suppressed effectively.In the initial speed of 65.km/h,the brake distance was shortened by 3.4%and 6.8%compared with the other two methods,respectively.Finally,initial speeds of 30-36.km/h tests was carried out on a flat soil road.Compared with a no-control brake,the displacement was shortened by 1.8.m.It demonstrates the effectiveness of the slip-control strategy.In the same situation,the error between the simulation and test is 18.1%,which validates the accuracy of models.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.52272387)State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,Shijiazhuang Tiedao University of China(Grant No.KF2020-29)Beijing Municipal Science and Technology Commission through Beijing Nova Program of China(Grant No.20230484475).
文摘This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods.
文摘In order to restrain the high pumping voltage of braking procedure which is harmful to the system of electric armored vehicle. Based on the analysis of pumping voltage of the braking procedure, the relation between pumping voltage and PWM ratio is derived and a new digital control method to restrain the pumping voltage by changing PWM ratio is put forward. Because the capacitance is decreased effectively, the volume of controller is reduced and the performance to price ratio is improved. The results of computer simulation and experiment proved that this method is feasible and valid.
基金supported by National Development and Reform Commission of China (Grant No. 2005934)
文摘Braking on low adhesion-coefficient roads, hybrid electric vehicle's motor regenerative torque is switched off to safeguard the normal anti-lock braking system (ABS) fimction. When the ABS control is terminated, the motor regenerative braking is readmitted. Aiming at avoiding permanent cycles from hydraulic anti-lock braking to motor regenerative braking, a novel electro-mechanical hybrid anti-lock braking system using fuzzy logic is designed. Different from the traditional single control structure, this system has a two-layered hierarchical structure, The first layer is responsible for harmonious adjustment or interaction between regenerative system and anti-lock braking system. The second layer is responsible for braking torque distribution and adjustment. The closed-loop simulation model is built. Control strategy and method for coordination between regenerative and anti-lock braking are developed. Simulation braking on low adhesion-coefficient roads with fuzzy logic control and real vehicle braking field test are presented. The results from simulating analysis and experiment show braking performance of the vehicle is perfect, harmonious coordination between regenerative and anti-lock braking function, significant amount of braking energy can be recovered and the proposed control strategy and method are effective.
基金supported by National Hi-tech Research and Development Program of China (863 Program,Grant No.2008AA11A126)Program for New Century Excellent Talents in University of China (Grant No. NCET-10-0498)
文摘Resolvers are normally employed for rotor positioning in motors for electric vehicles, but resolvers are expensive and vulnerable to vibrations. Hall sensors have the advantages of low cost and high reliability, but the positioning accuracy is low. Motors with Hall sensors are typically controlled by six-step commutation algorithm, which brings high torque ripple. This paper studies the high-performance driving and braking control of the in-wheel permanent magnetic synchronous motor (PMSM) based on low-resolution Hall sensors. Field oriented control (FOC) based on Hall-effect sensors is developed to reduce the torque ripple. The positioning accuracy of the Hall sensors is improved by interpolation between two consecutive Hall signals using the estimated motor speed. The position error from the misalignment of the Hall sensors is compensated by the precise calibration of Hall transition timing. The braking control algorithms based on six-step commutation and FOC are studied. Two variants of the six-step commutation braking control, namely, half-bridge commutation and full-bridge commutation, are discussed and compared, which shows that the full-bridge commutation could better explore the potential of the back electro-motive forces (EMF), thus can deliver higher efficiency and smaller current ripple. The FOC braking is analyzed with the phasor diagrams. At a given motor speed, the motor turns from the regenerative braking mode into the plug braking mode if the braking torque exceeds a certain limit, which is proportional to the motor speed. Tests in the dynamometer show that a smooth control could be realized by FOC driving control and the highest efficiency and the smallest current ripple could be achieved by FOC braking control, compared to six-step commutation braking control. Therefore, FOC braking is selected as the braking control algorithm for electric vehicles. The proposed research ensures a good motor control performance while maintaining low cost and high reliability.
基金Project(JS-102)supported by the National Key Science and Technological Program of China for Electric VehiclesProject supported by Jilin University "985 Project" Engineering Bionic Technology Innovation Platform,China
文摘Regenerative braking was the process of converting the kinetic energy and potential energy, which were stored in the vehicle body when vehicle braked or went downhill, into electrical energy and storing it into battery. The problem on how to distribute braking forces of front wheel and rear wheel for electric vehicles with four-wheel drive was more complex than that for electric vehicles with front-wheel drive or rear-wheel drive. In this work, the frictional braking forces distribution curve of front wheel and rear wheel is determined by optimizing the braking force distribution curve of hydraulic proportional-adjustable valve, and then the safety brake range is obtained correspondingly. A new braking force distribution strategy based on regenerative braking strength continuity is proposed to solve the braking force distribution problem for electric vehicles with four-wheel drive. Highway fuel economy test(HWFET) driving condition is used to provide the speed signals, the braking force equations of front wheel and rear wheel are expressed with linear equations. The feasibility, effectiveness, and practicality of the new braking force distribution strategy based on regenerative braking strength continuity are verified by regenerative braking strength simulation curve and braking force distribution simulation curves of front wheel and rear wheel. The proposed strategy is simple in structure, easy to be implemented and worthy being spread.
基金Supported by the National Natural Science Foundation of China(51105197,51305198,11372129)the Project Funded by the Priority Academic Program Department of Jiangsu Higher Education Instructions
文摘The principle of electric braking system is analyzed and an anti-skid braking system based on the slip rate control is proposed.The fuzzy-PID controller with parameter self-adjustment feature is designed for the anti-skid braking system.The dynamic model of aircraft ground braking is established in the simulation environment of MATLAB/SIMULINK,and simulation results of dry runway and wet runway are presented.The results show that the fuzzy-PID controller with parameter self-adjustment feature for the electric anti-skid braking system keeps working in the state of stability and the brake efficiencies are increased to 93%on dry runway and 82%on wet runway respectively.
基金863 National Project EQ7200HEV hybridelectric vehicle (2001AA501200,2003AA501200)
文摘Energy regeneration during braking is an important technique for hybrid electric vehicle (HEV) to improve their fuel economy and extend their driving range. Due to the effect of regenerative braking torque which is added by electric motor, the braking torque distribution between front and rear axles should be changed and the control logic of anti-lock braking system (ABS) ought to be adjusted according to the regenerative braking torque. This paper put forward a braking control strategy for hybrid electric vehicle; the control strategy is implemented with eight DOFs (Degree-of-Freedom) nonlinear vehicle forward simulation model which is built under the environment of Matlab/Simulink. Based on target wheel slip ratio, a fuzzy logic approach was applied to maintain the optimal target slip ratio so that best compromise between hydraulic torque and regenerative torque can be obtained for the vehicle.
基金Supported by Jiangsu Provincial Key R&D Program(Grant No.BE2019004)National Natural Science Funds for Distinguished Young Scholar of China(Grant No.52025121)+1 种基金National Nature Science Foundation of China(Grant Nos.51805081,51975118,52002066)Jiangsu Provincial Achievement Transformation Project(Grant No.BA2018023).
文摘Most researches focus on the regenerative braking system design in vehicle components control and braking torque distribution,few combine the connected vehicle technologies into braking velocity planning.If the braking intention is accessed by the vehicle-to-everything communication,the electric vehicles(EVs)could plan the braking velocity for recovering more vehicle kinetic energy.Therefore,this paper presents an energy-optimal braking strategy(EOBS)to improve the energy efficiency of EVs with the consideration of shared braking intention.First,a double-layer control scheme is formulated.In the upper-layer,an energy-optimal braking problem with accessed braking intention is formulated and solved by the distance-based dynamic programming algorithm,which could derive the energy-optimal braking trajectory.In the lower-layer,the nonlinear time-varying vehicle longitudinal dynamics is transformed to the linear time-varying system,then an efficient model predictive controller is designed and solved by quadratic programming algorithm to track the original energy-optimal braking trajectory while ensuring braking comfort and safety.Several simulations are conducted by jointing MATLAB and CarSim,the results demonstrated the proposed EOBS achieves prominent regeneration energy improvement than the regular constant deceleration braking strategy.Finally,the energy-optimal braking mechanism of EVs is investigated based on the analysis of braking deceleration,battery charging power,and motor efficiency,which could be a guide to real-time control.
文摘A vehicle stopping method using an electric brake until a traction motor is stopped is studied. At the moment of vehicle stop, electric brake is changed to control mode where torque is reduced at a low speed. Gradient is controlled by estimating the load torque of motor, thereby traction motor is not rotated after stop. In addition, coasting operation and brake test are performed from normal-opposite operation and start using a small-scale model comprising the inertial load equipment and the power converter. Further, traction motor is made to be equipped with a suspension torque. Pure electric braking that makes traction motor stop by an air brake at the time of stop is also implemented. Constant torque range and constant power range are expanded during braking so that braking force is secured with the electric brakes even in high speed region. Therefore, vehicle reduction effect can be expected by reducing parts related with an air brake which is not used frequently by using a pure electric brake in the M car in wide speed region. Further, maintenance of brake system can be reduced. Besides, ride comfort of passenger in the electric rail car, energy efficiency improvement, and noise reduction effect can be additionally expected. Further, an improved brake method that uses only an electric brake till motor stop is proposed by comparing those in the blending brake that uses an air brake while reducing brake torque at vehicle stop.
基金Supported by the National High Technology Research and Development Program of China(2011AA11A252)
文摘The operating mode of a single shaft hybrid electric vehicle (SSHEV) in which the electric motor exerts negative torque on the shaft to imitate engine braking is analyzed. The method of determining the quantity of regenerative braking torque is proposed with the premise that the braking intensity required by the driver is satisfied. On this basis, factors that affect torque generated by the motor are listed, and how the battery' s temperature and state of charge ( SOC ) restrict and correct the braking torque is expounded. Finally, road test results show that the motor' s constant power or constant torque control is an effective way to recover the mechanical energy during decelerating.
基金Electric Automobile and Intelligent Connected Automobile Industry Innovation Project of Anhui Province of China(Grant No.JAC2019022505)Key Research and Development Projects in Shandong Province of China(Grant No.2019TSLH701).
文摘Proper braking force distribution strategies can improve both stability and economy performance of hybrid electric vehicles,which is prominently proved by many studies.To achieve better dynamic stable performance and higher energy recovery efficiency,an effective braking control strategy for hybrid electric buses(HEB)based on vehicle mass and road slope estimation is proposed in this paper.Firstly,the road slope and the vehicle mass are estimated by a hybrid algorithm of extended Kalman filter(EKF)and recursive least square(RLS).Secondly,the total braking torque of HEB is calculated by the sliding mode controller(SMC),which uses the information of brake intensity,whole vehicle mass,and road slope.Finally,comprehensively considering driver’s braking intention and regulations of the Economic Commission for Europe(ECE),the optimal proportional relationship between regenerative braking and pneumatic braking is obtained.Furthermore,related simulations and experiments are carried out on the hardware-in-the-loop test bench.Results show that the proposed strategy can effectively improve the braking performance and increase the recovered energy through precise control of the braking torque.
文摘The characterization of the performances of a PV cell is linked to intrinsic factors of this cell. It is therefore important for us to identify the favorable or unfavorable conditions that affect the performance of PV cells. It is from this perspective that it seems judicious to us to study the simultaneous influence of the heating of the base and an external electric field on the performance of a PV cell under intense illumination of 50 suns. Two phenomena contribute to the heating of the base of a PV cell which is heating due to the transfer by conduction of solar radiation energy received by the surface of the PV cell and the heat generated inside the PV cell by various phenomena linked to the movement of photogenerated charged carriers. In this study, we take into account the heating linked to the movement of the charged carriers in the base. After a mathematical modeling of the PV cell considered, some hypotheses are formulated and the expressions of the electrical parameters are established as a function of the electric field and base temperature. Subsequently, we use numerical simulation to highlight the behavior of theses parameters as a function of temperature and of the intensity of the electric field. The results show that for any given temperature, the orientation of the electric field as considered in our work improves the performance of the PV cell while high temperatures degrade these performances. Furthermore, the analysis of the curves shows that the harmful effect of temperature on the performance of a PV cell is more accentuated at large values of electric field.
基金Supported by National Natural Science Foundation of China(No.61370088)International Scientific and Technological Cooperation Projects of China(No.2012DFB10060)Topic of the Ministry of Education about Humanities and Social Sciences of China(No.12JDGC007)
文摘In this paper, the hybrid electric vehicle braking process is researched, by using variables consists of HEV speed, motor speed, and state of charge established, fimctions of mechanical braking force, regenerative braking force and efficiency of energy recovery are constructed, and the control goal is to maximization the energy recovery efficiency. Under the feedback control strategy, with the constrain condition of braking strength and braking stability, combining experiments in ADVISOR, in different experiments of different working conditions, we can see that in UDDS Cycle, the regenerative braking efficiency is the best. What's more, compared with strategies in ADVISOR, strategy proposed in this paper is obviously better.
基金Sichuan Province Key Discipline Con-struction for Automotive Engineering ( No.SZD0410 )Research Foundation of Xihua University (No.R0620301)
文摘To evaluate the software behavior of the electronic control unit (ECU) of automotive electrical parking brake (EPB), a software- in-the-loop (SiL) simulation system is built. The EPB is simulated by ARX (auto-regressive with auxiliary input) model, ARMAX (auto-regressive moving average with auxiliary input) model, and NNARMAX (neural network ARMAX) model. By system identification, the ARX(3,4,2), ARX(4,4,2), ARMAX(3,3,1,1), and ARMAX(4,4,3,2) models are derived. Validation results show that the four-order ARMAX model and the NNARMAX model better simulate the actuator of the EPB.
文摘Facing the increasingly serious environmental pollution and oil crisis,the development of automobile industry is facing a very serious challenge.For the sustainable development of automobile industry,the electric vehicle using motor as driving equipment can realize“pollution-free”,which has become the focus of automobile research and development in many countries.In the research and development of electric vehicles,the electric vehicles driven by electric wheels have attracted the attention of all walks of life because of their ideal control characteristics and broad application prospects.In this paper,the electric wheel drive vehicle as the research object,the electromechanical composite brake control system is studied and analyzed.
文摘This paper describes in detail three kinds of typical compound braking strategy of wheel motor drive electric vehicle and summarizes the current commonly used strategies based on the three typical strategies developed. In the end, a new compound braking strategy is proposed;that is, we take braking mode classify, ECE regulations and SOC value of the battery as an important reference of braking force that joins the motor braking force, as well as we join the different identification models;according to the different braking modes, the purpose is that we can apply the different braking program.
文摘A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.
基金Supported by Guangdong Provincial Science and Technology Planning Project of China(Grant Nos.2013B010402006,2013B010405007,2013B090600024)
文摘Coasting in gear is a common driving mode for the conventional vehicle equipped with the internal combustion engine(ICE), and the assistant braking function of ICE is utilized to decelerate the vehicle in this mode. However, the electric vehicle(EV) does not have this feature in the coasting mode due to the relatively small inertia of the driving motor, so it will cause the driver cannot obtain the similar driving feeling to that of the conventional vehicle, and even a traffic accident may occur if the driver cannot immediately adapt to the changes. In this paper, the coasting control for EV is researched based on the driving feeling. A conventional vehicle equipped with continuously variable transmission(CVT) is taken as the reference vehicle, and the combined simulation model of EV is established based on AVL CRUISE and MATLAB/Simulink. The torque characteristic of the CVT output shaft is measured in coasting mode, and the data are smoothed and fitted to a polynomial curve. For the EV in coasting mode, if the state of charge(SOC) of the battery is below 95%, the polynomial curve is used as the control target for the torque characteristic of the driving motor, otherwise, the required torque is replaced by hydraulic braking torque to keep the same deceleration. The co-simulation of Matlab/Simulink/Stateflow and AVL CRUISE, as well as the hardware-in-loop experiment combined with d SPACE are carried out to verify the effectiveness and the real-time performance of the control algorithm. The results show that the EV with coasting braking control system has similar driving feeling to that of the reference vehicle, meanwhile, the battery SOC can be increased by 0.036% and 0.021% in the initial speed of 100 km/h and 50 km/h, respectively. The proposed control algorithm for EV is beneficial to improve the driving feeling in coasting mode, and it also makes the EV has the assistant braking function.
基金supported by the National Natural Science Foundation of China [No.U1334206]the National Key R&D Program of China [No.2016YFB1200500]
文摘Once operating trains are disabled on the railway lines,an efficient manner is to utilize the train for train rescue.Owning to the different train and coupler types,it is difficult to formulate uniform regulations for train to train rescue.In this paper,the longitudinal train dynamics of electric multiple units under rescue were analyzed by field and laboratory tests.The angling behavior of the brakinginduced coupler under compressed in-train forces was analyzed.A dynamic model for the train and draft gear system was developed considering accurate boundary limitations and braking characteristics.The safety indices and their limits for the coupled rescue train were defined.Thedynamic evaluations of different train to train rescue scenarios were analyzed.It is indicated that the coupler vertical rotation occurs during the emergency braking applied by the assisting train.The vertical force components of intrain forces lead to the carbody pitch behavior and even cause local destructions to the coupler system.The carbody pitch motion can arise the inference of in-train devices.Based on the safety evaluation of train and coupler system,the regulations for typical train to train rescue scenarios were formulated.
文摘In order to improve the brake performance of a dual independent electric drive tracked vehicle,a dynamic model for braking situation was established.Then,a sliding model controller(SMC)with an auxiliary system was designed to control the slip and its effectiveness was proved.A hardware-in-loop simulation through MATLAB/XPC was compared with the normal SMC and normal integral sliding mode controller(ISMC),the results show that SMC with the auxiliary system has a better performance:a smaller overshoot and steady state error.The disturbance is suppressed effectively.In the initial speed of 65.km/h,the brake distance was shortened by 3.4%and 6.8%compared with the other two methods,respectively.Finally,initial speeds of 30-36.km/h tests was carried out on a flat soil road.Compared with a no-control brake,the displacement was shortened by 1.8.m.It demonstrates the effectiveness of the slip-control strategy.In the same situation,the error between the simulation and test is 18.1%,which validates the accuracy of models.