The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electro...The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).展开更多
Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic...Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.展开更多
China is facing important challenges stemming from increasing rates of urbanization and aging population. To pursue its "harmonious society" objective without disrupting its path to development major overhauls are n...China is facing important challenges stemming from increasing rates of urbanization and aging population. To pursue its "harmonious society" objective without disrupting its path to development major overhauls are necessary in education, health, social security and above all in public services, particularly in electricity. China's electricity industry is at the crossroads. To meet the challenges, new models of regulation should be developed and applied. This paper examines the current state of the Chinese electricity industry and the burden it imposes on its public finances. It also reviews and critically examines the existing FIT (Europe) and RPS (USA) models of regulation and of promotion of renewable energies and advances on whether they are advantageous for China. It is argued that the electricity industry has already undergone important reforms but cross subsidies still exist, equivalent to 1.5% of China's GDP. Drastic rate rebalancing policies will create sustainability problems and a deterioration of China's public finances. To avoid such negative results, China has to further reform its electricity industry gradually and use wisely FIT-type programs to bring renewables into the grid and fulfill the Kyoto Protocol展开更多
We report a tunable transverse magnetoresistance of the planar Hall effect(PHE),up to 48%in the Ni80Fe20/HfO2 heterostructures.This control is achieved by applying a gate voltage with an ionic liquid technique at ultr...We report a tunable transverse magnetoresistance of the planar Hall effect(PHE),up to 48%in the Ni80Fe20/HfO2 heterostructures.This control is achieved by applying a gate voltage with an ionic liquid technique at ultra-low voltage,which exhibits a gate-dependent PHE.Moreover,in the range of 0-V to 1-V gate voltage,transverse magnetoresistance of PHE can be continuously regulated.Ferromagnetic resonance(FMR)also demonstrates the shift of the resonance field at low gate voltage.This provides a new method for the design of the electric field continuous control spintronics device with ultra-low energy consumption.展开更多
Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can...Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can obtain a good field grading effect,but it is accompanied by the deterioration of mechanical properties.Compounding SiC with different shapes can solve this contradiction.By incorporating one-dimensional SiC whiskers(SiCw)to synergize with granular SiCp,SiC/SR FGM with better field-dependent conductivity,mechanical properties and thermal conductivity than large-size SiCp and large volume fraction filling case can be obtained by using smaller size SiCp and lower filling contents.The simulations of 500 kv line insulators show that the modified SiC/SR FGM can reduce the maximum field strength along the insulator surface and at sheath-core rod interfaces by 55%and 71.4%,respectively.The combined application of FGM and grading ring can achieve a complementary effect.Using FGM to partially replace the role of the grading rings,the field strength indicators can still meet the operational requirements after the tube radius and shielding depth of the grading rings at both ends are reduced by 36.2%and 40%separately,which is a benefit to alleviating the problems of high weight and large volume faced by traditional field grading methods.展开更多
With the support by the National Natural Science Foundation of China,the research team led by Prof.Yu Yongchun(禹永春)at the Institutes of Brain Science,Fudan University,revealed the vital roles of electrical coupling...With the support by the National Natural Science Foundation of China,the research team led by Prof.Yu Yongchun(禹永春)at the Institutes of Brain Science,Fudan University,revealed the vital roles of electrical coupling in chemical synapse formation between interneurons,which was published in Nature Communications(2016,7:12229,DOI:10.1038).Although the excitatory neurons in the neocortex are electrically coupled only during early development,展开更多
基金financially supported by the Natural Sciences and Engineering Research Council of Canada (NSERC),through the Discovery Grant Program (RGPIN-2018-06725)the Discovery Accelerator Supplement Grant program (RGPAS-2018-522651)+2 种基金the New Frontiers in Research Fund-Exploration program (NFRFE-2019-00488)supported by funding from the Canada First Research Excellence Fund as part of the University of Alberta’s Future Energy Systems research initiative (FES-T06-Q03)supported by the Chinese Scholarship Council (CSC)(Grant No. 202006450027).
文摘The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions.Regulating the elec-trical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes.Herein,we report an ultrathin zincophilic ZnS layer as a model regu-lator.At a given cycling current,the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer(stern layer)and a suppressed diffuse layer,indicating the regulated charge distribution and decreased electric double layer repulsion force.Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance.Consequently,the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm^(-2) with a lower overpotential of 25 mV.When coupled with an I2/AC cathode,the cell demonstrates a high rate performance of 160 mAh g^(-1) at 0.1 A g^(-1) and long cycling stability of over 10,000 cycles at 10 A g^(-1).The Zn||MnO_(2) also sustains both high capacity and long cycling stability of 130 mAh g^(-1) after 1,200 cycles at 0.5 A g^(-1).
基金funded by the National Natural Science Foundation of China(U21B2057,12102328,and 52372252)the Newly Introduced Scientific Research Start-up Funds for Hightech Talents(DD11409024).
文摘Zinc-ion batteries are promising for large-scale electrochemical energy storage systems,which still suffer from interfacial issues,e.g.,hydrogen evolution side reaction(HER),self-corrosion,and uncontrollable dendritic Zn electrodeposition.Although the regulation of electric double layer(EDL)has been verified for interfacial issues,the principle to select the additive as the regulator is still misted.Here,several typical amino acids with different characteristics were examined to reveal the interfacial behaviors in regulated EDL on the Zn anode.Negative charged acidic polarity(NCAP)has been unveiled as the guideline for selecting additive to reconstruct EDL with an inner zincophilic H_(2)O-poor layer and to replace H_(2)O molecules of hydrated Zn^(2+)with NCAP glutamate.Taking the synergistic effects of EDL regulation,the uncontrollable interface is significantly stabilized from the suppressed HER and anti-self-corrosion with uniform electrodeposition.Consequently,by adding NCAP glutamate,a high average Coulombic efficiency of 99.83%of Zn metal is achieved in Zn|Cu asymmetrical cell for over 2000 cycles,and NH4V4O10|Zn full cell exhibits a high-capacity retention of 82.1%after 3000 cycles at 2 A g^(-1).Recapitulating,the NCAP principle posted here can quicken the design of trailblazing electrolyte additives for aqueous Zn-based electrochemical energy storage systems.
文摘China is facing important challenges stemming from increasing rates of urbanization and aging population. To pursue its "harmonious society" objective without disrupting its path to development major overhauls are necessary in education, health, social security and above all in public services, particularly in electricity. China's electricity industry is at the crossroads. To meet the challenges, new models of regulation should be developed and applied. This paper examines the current state of the Chinese electricity industry and the burden it imposes on its public finances. It also reviews and critically examines the existing FIT (Europe) and RPS (USA) models of regulation and of promotion of renewable energies and advances on whether they are advantageous for China. It is argued that the electricity industry has already undergone important reforms but cross subsidies still exist, equivalent to 1.5% of China's GDP. Drastic rate rebalancing policies will create sustainability problems and a deterioration of China's public finances. To avoid such negative results, China has to further reform its electricity industry gradually and use wisely FIT-type programs to bring renewables into the grid and fulfill the Kyoto Protocol
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51671099 and 11974149)the Open Foundation Project of Jiangsu Key Laboratory of Thin Films(Grant No.KJS1745)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT16R35)the Fundamental Research Funds for the Central Universities,China.
文摘We report a tunable transverse magnetoresistance of the planar Hall effect(PHE),up to 48%in the Ni80Fe20/HfO2 heterostructures.This control is achieved by applying a gate voltage with an ionic liquid technique at ultra-low voltage,which exhibits a gate-dependent PHE.Moreover,in the range of 0-V to 1-V gate voltage,transverse magnetoresistance of PHE can be continuously regulated.Ferromagnetic resonance(FMR)also demonstrates the shift of the resonance field at low gate voltage.This provides a new method for the design of the electric field continuous control spintronics device with ultra-low energy consumption.
基金supported by Science and Technology Project of State Grid Corporation of China(7000-202158440A-0-0-00)。
文摘Use of nonlinearconductive SiC/silicone rubber(SR)field grading material(FGM)can improve the local field concentration of composite insulators.Adding large volume fraction and large-size SiC particles(SiCp)into SR can obtain a good field grading effect,but it is accompanied by the deterioration of mechanical properties.Compounding SiC with different shapes can solve this contradiction.By incorporating one-dimensional SiC whiskers(SiCw)to synergize with granular SiCp,SiC/SR FGM with better field-dependent conductivity,mechanical properties and thermal conductivity than large-size SiCp and large volume fraction filling case can be obtained by using smaller size SiCp and lower filling contents.The simulations of 500 kv line insulators show that the modified SiC/SR FGM can reduce the maximum field strength along the insulator surface and at sheath-core rod interfaces by 55%and 71.4%,respectively.The combined application of FGM and grading ring can achieve a complementary effect.Using FGM to partially replace the role of the grading rings,the field strength indicators can still meet the operational requirements after the tube radius and shielding depth of the grading rings at both ends are reduced by 36.2%and 40%separately,which is a benefit to alleviating the problems of high weight and large volume faced by traditional field grading methods.
文摘With the support by the National Natural Science Foundation of China,the research team led by Prof.Yu Yongchun(禹永春)at the Institutes of Brain Science,Fudan University,revealed the vital roles of electrical coupling in chemical synapse formation between interneurons,which was published in Nature Communications(2016,7:12229,DOI:10.1038).Although the excitatory neurons in the neocortex are electrically coupled only during early development,
基金supported by the National Key Research and Development Program of China (2021YFF0500600)National Natural Science Foundation of China (No.U2001220)+1 种基金Shenzhen All-Solid-State Lithium Battery Electrolyte Engineering Research Center (XMHT20200203006)Shenzhen Technical Plan Project (RCJC20200714114436091,JCYJ20220818101003007,and JCYJ20220818101003008)。