With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly sub...With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly submergence,which shows that the usage patterns of electricity thieves may not always deviate from those of normal users,the performance of the existing usage-pattern-based method could be affected.In addition,the detection results of some unsupervised learning algorithm models are abnormal degrees rather than“0-1”to ascertain whether electricity theft has occurred.The detection with fixed threshold value may lead to deviation and would not be sufficiently flexible to handle the detection for different scenes and users.To address these issues,this study proposes a new electricity theft detection method based on load shape dictionary of users.A corresponding strategy for tunable threshold is proposed to optimize the detection effect of electricity theft,and the efficacy and applicability of the proposed adaptive electricity theft detection method were verified from numerical experiments.展开更多
With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is vio...With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is violent,which makes the training of detection model challenging.In this case,this paper proposes an electricity theft detection method based on ensemble learning and prototype learning,which has great performance on imbalanced dataset and abnormal data with different abnormal level.In this paper,convolutional neural network(CNN)and long short-term memory(LSTM)are employed to obtain abstract feature from electricity consumption data.After calculating the means of the abstract feature,the prototype per class is obtained,which is used to predict the labels of unknown samples.In the meanwhile,through training the network by different balanced subsets of training set,the prototype is representative.Compared with some mainstream methods including CNN,random forest(RF)and so on,the proposed method has been proved to effectively deal with the electricity theft detection when abnormal data only account for 2.5%and 1.25%of normal data.The results show that the proposed method outperforms other state-of-the-art methods.展开更多
One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which make...One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques.展开更多
基金supported by the National Natural Science Foundation of China(U1766210).
文摘With the application of the advanced measurement infrastructure in power grids,data driven electricity theft detection methods become the primary stream for pinpointing electricity thieves.However,owing to anomaly submergence,which shows that the usage patterns of electricity thieves may not always deviate from those of normal users,the performance of the existing usage-pattern-based method could be affected.In addition,the detection results of some unsupervised learning algorithm models are abnormal degrees rather than“0-1”to ascertain whether electricity theft has occurred.The detection with fixed threshold value may lead to deviation and would not be sufficiently flexible to handle the detection for different scenes and users.To address these issues,this study proposes a new electricity theft detection method based on load shape dictionary of users.A corresponding strategy for tunable threshold is proposed to optimize the detection effect of electricity theft,and the efficacy and applicability of the proposed adaptive electricity theft detection method were verified from numerical experiments.
基金supported by National Natural Science Foundation of China(No.52277083).
文摘With the development of advanced metering infrastructure(AMI),large amounts of electricity consumption data can be collected for electricity theft detection.However,the imbalance of electricity consumption data is violent,which makes the training of detection model challenging.In this case,this paper proposes an electricity theft detection method based on ensemble learning and prototype learning,which has great performance on imbalanced dataset and abnormal data with different abnormal level.In this paper,convolutional neural network(CNN)and long short-term memory(LSTM)are employed to obtain abstract feature from electricity consumption data.After calculating the means of the abstract feature,the prototype per class is obtained,which is used to predict the labels of unknown samples.In the meanwhile,through training the network by different balanced subsets of training set,the prototype is representative.Compared with some mainstream methods including CNN,random forest(RF)and so on,the proposed method has been proved to effectively deal with the electricity theft detection when abnormal data only account for 2.5%and 1.25%of normal data.The results show that the proposed method outperforms other state-of-the-art methods.
文摘One of the major concerns for the utilities in the Smart Grid(SG)is electricity theft.With the implementation of smart meters,the frequency of energy usage and data collection from smart homes has increased,which makes it possible for advanced data analysis that was not previously possible.For this purpose,we have taken historical data of energy thieves and normal users.To avoid imbalance observation,biased estimates,we applied the interpolation method.Furthermore,the data unbalancing issue is resolved in this paper by Nearmiss undersampling technique and makes the data suitable for further processing.By proposing an improved version of Zeiler and Fergus Net(ZFNet)as a feature extraction approach,we had able to reduce the model’s time complexity.To minimize the overfitting issues,increase the training accuracy and reduce the training loss,we have proposed an enhanced method by merging Adaptive Boosting(AdaBoost)classifier with Coronavirus Herd Immunity Optimizer(CHIO)and Forensic based Investigation Optimizer(FBIO).In terms of low computational complexity,minimized over-fitting problems on a large quantity of data,reduced training time and training loss and increased training accuracy,our model outperforms the benchmark scheme.Our proposed algorithms Ada-CHIO andAda-FBIO,have the low MeanAverage Percentage Error(MAPE)value of error,i.e.,6.8%and 9.5%,respectively.Furthermore,due to the stability of our model our proposed algorithms Ada-CHIO and Ada-FBIO have achieved the accuracy of 93%and 90%.Statistical analysis shows that the hypothesis we proved using statistics is authentic for the proposed technique against benchmark algorithms,which also depicts the superiority of our proposed techniques.