In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,inc...In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.展开更多
For a conventional agricultural tractor the main environmental effects origina ates from the usage phase, more specifically from the diesel use and exhausts. To decre ease the environ nmental effect, it is vital to ...For a conventional agricultural tractor the main environmental effects origina ates from the usage phase, more specifically from the diesel use and exhausts. To decre ease the environ nmental effect, it is vital to find a substitute for fossil diesel as a fuel for agricultural machinery. This s study investig gated the feasib bility of an autonomous battery electric tractor through simulation. The simulated farm is an organic dairy farm of 200 ha with five crops in the crop rotation cycle and a traditional plough among the used implements. Based on the res sult from the simulation cost calculations, sensitivity analysi is and a limited life cycle analysis (LCA) was made. The results show that it is in theory possible to replace a conventional tractor (160 kW) with two autonomous battery powered machines (36 kW engine, 113 kWh battery) with 15% lower costs. Energy consumption would be red duced by 58% a and greenhouse gas emissions by 92% compared to diesel when energy consumption and greenhouse gas emissions from battery manufacturing were included. Today the technology for autonom mous control is under fast development, but there are yet no systems on the market that can handle all machinery tasks like assumed in this study. Challenges yet to solve are , among others, legislative, relevant sensors, logistics and fleet management. Further rese earch is needed to verify the results in practical farming.展开更多
The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wid...The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wide range of areas such as engineering,economics,business,environmental management and many others.This paper aims to provide an overview of the ELECTRE method,including its fundamental concepts,applications,advantages,and limitations.At its core,the ELECTRE method is an outranking family of MCDM techniques,which allows for the direct comparison of alternatives based on a set of criteria.The method takes into account the preferences and importance of decision-makers and generates a ranking of the alternatives based on their relative strengths and weaknesses.The ELECTRE method is a powerful tool for decision-making,and its applicability to a wide range of fields demonstrates its versatility and adaptability.By understanding its concepts,applications,merits,and demerits,decision-makers can use the ELECTRE method to make informed and effective decisions in a variety of contexts.展开更多
The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on ...The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on electric vehicles,and electric agricultural machinery draw much less attention.Therefore,a method of powertrain parameter matching and optimization design for electric tractor was proposed in this paper,which was based on dual-motor coupling drive mode.The particle swarm optimization(PSO)algorithm based on mixed penalty function was used for parameter optimization.Parameter optimization design was programmed using MATLAB.A simulation dynamic model with optimization design variables of electric tractor powertrain was established based on MATLAB/Simulink.Compared with the simulation results before optimization,the objective functions were optimized and the traction performance of electric tractor was improved,which indicated the effectiveness of the proposed method.展开更多
基金supported by the National Key Research and Development Plan of China(2022YFD2001201)the Beijing Postdoctoral Research Foundation(2023-ZZ-112)+1 种基金the National Natural Science Foundation of China(52272444)the Natural Science Foundation of Jiangsu Province(BK20230548).
文摘In response to the problems of excessive greenhouse-gas and particulate emissions and the low traction efficiency of conventional diesel tractors in the field,a purely electric wheel-side drive tractor was studied,including an electric motor drive system,a battery ballast system,and an electro–hydraulic suspension system.This paper develops a dynamics model of an electric tractor-ploughing unit under complex soil conditions,leading to the proposal of an active control method for drive wheel torque and a joint control method for the traction force of the suspension system and the front-and rear-axle loads of a tractor.Finally,the tractor is prototyped and assembled,and ploughing tests are carried out.The ploughing results show that the active torque-distribution control method proposed in this study reduces the tractor slip by 14.83%and increases the traction efficiency by 10.28%compared with the average torquedistribution mode.Compared with the conventional traction control mode,the joint control method for traction and ballast proposed in this paper results in a 3.7%increase in traction efficiency,a 15.05%decrease in slip,and a 4.9%reduction in total drive motor energy consumption.This study will help to improve the operation quality and traction efficiency of electric tractors in complex soil conditions.
文摘For a conventional agricultural tractor the main environmental effects origina ates from the usage phase, more specifically from the diesel use and exhausts. To decre ease the environ nmental effect, it is vital to find a substitute for fossil diesel as a fuel for agricultural machinery. This s study investig gated the feasib bility of an autonomous battery electric tractor through simulation. The simulated farm is an organic dairy farm of 200 ha with five crops in the crop rotation cycle and a traditional plough among the used implements. Based on the res sult from the simulation cost calculations, sensitivity analysi is and a limited life cycle analysis (LCA) was made. The results show that it is in theory possible to replace a conventional tractor (160 kW) with two autonomous battery powered machines (36 kW engine, 113 kWh battery) with 15% lower costs. Energy consumption would be red duced by 58% a and greenhouse gas emissions by 92% compared to diesel when energy consumption and greenhouse gas emissions from battery manufacturing were included. Today the technology for autonom mous control is under fast development, but there are yet no systems on the market that can handle all machinery tasks like assumed in this study. Challenges yet to solve are , among others, legislative, relevant sensors, logistics and fleet management. Further rese earch is needed to verify the results in practical farming.
文摘The ELECTRE(ELimination Et Choix Traduisant la REalite)method has gained widespread recognition as one of the most effective multi-criteria decision-making(MCDM)methods.Its versatility allows it to be applied in a wide range of areas such as engineering,economics,business,environmental management and many others.This paper aims to provide an overview of the ELECTRE method,including its fundamental concepts,applications,advantages,and limitations.At its core,the ELECTRE method is an outranking family of MCDM techniques,which allows for the direct comparison of alternatives based on a set of criteria.The method takes into account the preferences and importance of decision-makers and generates a ranking of the alternatives based on their relative strengths and weaknesses.The ELECTRE method is a powerful tool for decision-making,and its applicability to a wide range of fields demonstrates its versatility and adaptability.By understanding its concepts,applications,merits,and demerits,decision-makers can use the ELECTRE method to make informed and effective decisions in a variety of contexts.
基金We acknowledge that this working was financially supported by the Thirteenth Five-Year National Key R&D Plan(2016YFD0701001).
文摘The rationality of powertrain parameter design has a significant influence on the traction performance and economic performance of electric tractor.At present,researches on powertrain parameter design mainly focus on electric vehicles,and electric agricultural machinery draw much less attention.Therefore,a method of powertrain parameter matching and optimization design for electric tractor was proposed in this paper,which was based on dual-motor coupling drive mode.The particle swarm optimization(PSO)algorithm based on mixed penalty function was used for parameter optimization.Parameter optimization design was programmed using MATLAB.A simulation dynamic model with optimization design variables of electric tractor powertrain was established based on MATLAB/Simulink.Compared with the simulation results before optimization,the objective functions were optimized and the traction performance of electric tractor was improved,which indicated the effectiveness of the proposed method.