A kind of management system for electric vehicle (EV) battery series was developed. The system can predict residual capacity for EV battery series and mileages. The system can determine if it is necessary for the batt...A kind of management system for electric vehicle (EV) battery series was developed. The system can predict residual capacity for EV battery series and mileages. The system can determine if it is necessary for the battery series to be charged. The system can determine which battery is necessary to be updated for the reason of damage or aging. The system can display the total voltage of battery series, extreme voltage and temperature of every battery in the series. The system can display the accumulative discharge for every battery in the series. The system can alarm when both total or extreme voltage is at low level, or temperature of a battery in the series is at high level. The system provided with a microprocessor as key part can collect and record signal of charging and discharging current, total voltage, extreme voltage and temperature for every battery. The mathematical model of residual capacity for EV lead acid batteries was discussed in details. The system operates well in the laboratory and meets the requirement.展开更多
The safety of lithium-ion batteries in electric vehicles(EVs)is attracting more attention.To ensure battery safety,early detection is necessary of a soft short circuit(SC)which may evolve into severe SC faults,leading...The safety of lithium-ion batteries in electric vehicles(EVs)is attracting more attention.To ensure battery safety,early detection is necessary of a soft short circuit(SC)which may evolve into severe SC faults,leading to fire or thermal runaway.This paper proposes a soft SC fault diagnosis method based on the extended Kalman filter(EKF)for on-board applications in EVs.In the proposed method,the EKF is used to estimate the state of charge(SOC)of the faulty cell by adjusting a gain matrix based on real-time measured voltages.The SOC difference between the estimated SOC and the calculated SOC through coulomb counting for the faulty cell is employed to detect soft SC faults,and the soft SC resistance values are further identified to indicate the degree of fault severity.Soft SC experiments are developed to investigate the characteristics of a series-connected battery pack under different working conditions when one battery cell in the pack is short-circuited with different resistance values.The experimental data are acquired to validate the proposed soft SC fault diagnosis method.The results show that the proposed method is effective and robust in quickly detecting a soft SC fault and accurately estimating soft SC resistance.展开更多
Developing new energy vehicles has been a worldwide consensus,and developing new energy vehicles characterized by pure electric drive has been China's national strategy.After more than 20 years of high-quality dev...Developing new energy vehicles has been a worldwide consensus,and developing new energy vehicles characterized by pure electric drive has been China's national strategy.After more than 20 years of high-quality development of China's electric vehicles(EVs),a technological R&D layout of“Three Verticals and Three Horizontals”has been created,and technological advantages have been accumulated.As a result,China's new energy vehicle market has ranked first in the world since 2015.To systematically solve the key problems of battery electric vehicles(BEVs)such as“driving range anxiety,long battery charging time,and driving safety hazards”,China took the lead in putting forward a“system engineering-based technology system architecture for BEVs”and clarifying its connotation.This paper analyzes the research status and progress of the three core components of this architecture,namely,“BEV platform,charging/swapping station,and real-time operation monitoring platform”,and their key technological points.The three major demonstration projects of the 2008 Beijing Olympic Games,the 2022 Beijing Winter Olympics,and the intelligent and connected autonomous battery electric bus project are discussed to specify the applications of BEVs in China.The key research directions for upgrading BEV technologies remain to be further improving the vehicle-level all-climate environmental adaptability and all-day safety of BEVs,systematically solving the charging problem of BEVs and improving their application convenience,and safeguarding safety with early warning and implementing active/passive safety protection for the whole life cycle of power batteries on the basis of BEVs'operation big data.BEVs have acquired new technological features such as intelligent and networked technology empowerment,extensive integration of control-by-wire systems,a platform of chassis hardware,and modularization of functional software.展开更多
文摘A kind of management system for electric vehicle (EV) battery series was developed. The system can predict residual capacity for EV battery series and mileages. The system can determine if it is necessary for the battery series to be charged. The system can determine which battery is necessary to be updated for the reason of damage or aging. The system can display the total voltage of battery series, extreme voltage and temperature of every battery in the series. The system can display the accumulative discharge for every battery in the series. The system can alarm when both total or extreme voltage is at low level, or temperature of a battery in the series is at high level. The system provided with a microprocessor as key part can collect and record signal of charging and discharging current, total voltage, extreme voltage and temperature for every battery. The mathematical model of residual capacity for EV lead acid batteries was discussed in details. The system operates well in the laboratory and meets the requirement.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51922006,51877009).
文摘The safety of lithium-ion batteries in electric vehicles(EVs)is attracting more attention.To ensure battery safety,early detection is necessary of a soft short circuit(SC)which may evolve into severe SC faults,leading to fire or thermal runaway.This paper proposes a soft SC fault diagnosis method based on the extended Kalman filter(EKF)for on-board applications in EVs.In the proposed method,the EKF is used to estimate the state of charge(SOC)of the faulty cell by adjusting a gain matrix based on real-time measured voltages.The SOC difference between the estimated SOC and the calculated SOC through coulomb counting for the faulty cell is employed to detect soft SC faults,and the soft SC resistance values are further identified to indicate the degree of fault severity.Soft SC experiments are developed to investigate the characteristics of a series-connected battery pack under different working conditions when one battery cell in the pack is short-circuited with different resistance values.The experimental data are acquired to validate the proposed soft SC fault diagnosis method.The results show that the proposed method is effective and robust in quickly detecting a soft SC fault and accurately estimating soft SC resistance.
文摘Developing new energy vehicles has been a worldwide consensus,and developing new energy vehicles characterized by pure electric drive has been China's national strategy.After more than 20 years of high-quality development of China's electric vehicles(EVs),a technological R&D layout of“Three Verticals and Three Horizontals”has been created,and technological advantages have been accumulated.As a result,China's new energy vehicle market has ranked first in the world since 2015.To systematically solve the key problems of battery electric vehicles(BEVs)such as“driving range anxiety,long battery charging time,and driving safety hazards”,China took the lead in putting forward a“system engineering-based technology system architecture for BEVs”and clarifying its connotation.This paper analyzes the research status and progress of the three core components of this architecture,namely,“BEV platform,charging/swapping station,and real-time operation monitoring platform”,and their key technological points.The three major demonstration projects of the 2008 Beijing Olympic Games,the 2022 Beijing Winter Olympics,and the intelligent and connected autonomous battery electric bus project are discussed to specify the applications of BEVs in China.The key research directions for upgrading BEV technologies remain to be further improving the vehicle-level all-climate environmental adaptability and all-day safety of BEVs,systematically solving the charging problem of BEVs and improving their application convenience,and safeguarding safety with early warning and implementing active/passive safety protection for the whole life cycle of power batteries on the basis of BEVs'operation big data.BEVs have acquired new technological features such as intelligent and networked technology empowerment,extensive integration of control-by-wire systems,a platform of chassis hardware,and modularization of functional software.