For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. A...For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.展开更多
Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large...Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large scale development of electric vehicle(EV)will also have a significant impact on power grid in general and load characteristics in particular.This paper aims to develop a controlled EV charging strategy to optimize the peak-valley difference of the grid when considering the regional wind and PV power outputs.The probabilistic model of wind and PV power outputs is developed.Based on the probabilistic model,the method of assessing the peak-valley difference of the stochastic load curve is put forward,and a two-stage peak-valley price model is built for controlled EV charging.On this basis,an optimization model is built,in which genetic algorithms are used to determine the start and end time of the valley price,as well as the peak-valley price.Finally,the effectiveness and rationality of the method are proved by the calculation result of the example.展开更多
基金Supported by National Basic Research Program of China(973 Program,Grant No.2011CB711200)National Science and Technology Support Program of China(Grant No.2015BAG17B00)National Natural Science Foundation of China(Grant No.51475333)
文摘For a distributed drive electric vehicle(DDEV) driven by four in-wheel motors, advanced vehicle dynamic control methods can be realized easily because motors can be controlled independently, quickly and precisely. And direct yaw-moment control(DYC) has been widely studied and applied to vehicle stability control. Good vehicle handling performance: quick yaw rate transient response, small overshoot, high steady yaw rate gain, etc, is required by drivers under normal conditions, which is less concerned, however. Based on the hierarchical control methodology, a novel control system using direct yaw moment control for improving handling performance of a distributed drive electric vehicle especially under normal driving conditions has been proposed. The upper-loop control system consists of two parts: a state feedback controller, which aims to realize the ideal transient response of yaw rate, with a vehicle sideslip angle observer; and a steering wheel angle feedforward controller designed to achieve a desired yaw rate steady gain. Under the restriction of the effect of poles and zeros in the closed-loop transfer function on the system response and the capacity of in-wheel motors, the integrated time and absolute error(ITAE) function is utilized as the cost function in the optimal control to calculate the ideal eigen frequency and damper coefficient of the system and obtain optimal feedback matrix and feedforward matrix. Simulations and experiments with a DDEV under multiple maneuvers are carried out and show the effectiveness of the proposed method: yaw rate rising time is reduced, steady yaw rate gain is increased, vehicle steering characteristic is close to neutral steer and drivers burdens are also reduced. The control system improves vehicle handling performance under normal conditions in both transient and steady response. State feedback control instead of model following control is introduced in the control system so that the sense of control intervention to drivers is relieved.
基金This work is supported by National Natural Science Foundation of China(No.51477116)the Special Founding for"Thousands Plan"of State Grid Corporation of China(No.XT71-12-028).
文摘Renewable energy,such as wind and photovoltaic(PV),produces intermittent and variable power output.When superimposed on the load curve,it transforms the load curve into a‘load belt’,i.e.a range.Furthermore,the large scale development of electric vehicle(EV)will also have a significant impact on power grid in general and load characteristics in particular.This paper aims to develop a controlled EV charging strategy to optimize the peak-valley difference of the grid when considering the regional wind and PV power outputs.The probabilistic model of wind and PV power outputs is developed.Based on the probabilistic model,the method of assessing the peak-valley difference of the stochastic load curve is put forward,and a two-stage peak-valley price model is built for controlled EV charging.On this basis,an optimization model is built,in which genetic algorithms are used to determine the start and end time of the valley price,as well as the peak-valley price.Finally,the effectiveness and rationality of the method are proved by the calculation result of the example.