期刊文献+
共找到16,305篇文章
< 1 2 250 >
每页显示 20 50 100
Integrated Active Suspension and Anti-Lock Braking Control for Four-Wheel-Independent-Drive Electric Vehicles
1
作者 Ze Zhao Lei Zhang +3 位作者 Xiaoling Ding Zhiqiang Zhang Shaohua Li Liang Gu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期87-98,共12页
This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and ... This paper presents an integrated control scheme for enhancing the ride comfort and handling performance of a four-wheel-independent-drive electric vehicle through the coordination of active suspension system(ASS)and anti-lock braking system(ABS).First,a longitudinal-vertical coupled vehicle dynamics model is established by integrating a road input model.Then the coupling mechanisms between longitudinal and vertical vehicle dynamics are analyzed.An ASS-ABS integrated control system is proposed,utilizing an H∞controller for ASS to optimize load transfer effect and a neural network sliding mode control for ABS implementation.Finally,the effectiveness of the proposed control scheme is evaluated through comprehensive tests conducted on a hardware-in-loop(HIL)test platform.The HIL test results demonstrate that the proposed control scheme can significantly improve the braking performance and ride comfort compared to conventional ABS control methods. 展开更多
关键词 Four-wheel-independent-drive electric vehicles Active suspension system(ASS) Anti-lock braking system(ABS) Vertical-longitudinal vehicle dynamics
下载PDF
Coordinated Voltage Control of Distribution Network ConsideringMultiple Types of Electric Vehicles
2
作者 Liang Liu Guangda Xu +3 位作者 Yuan Zhao Yi Lu Yu Li Jing Gao 《Energy Engineering》 EI 2024年第2期377-404,共28页
The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage... The couple between the power network and the transportation network(TN)is deepening gradually with the increasing penetration rate of electric vehicles(EV),which also poses a great challenge to the traditional voltage control scheme.In this paper,we propose a coordinated voltage control strategy for the active distribution networks considering multiple types of EV.In the first stage,the action of on-load tap changer and capacitor banks,etc.,are determined by optimal power flow calculation,and the node electricity price is also determined based on dynamic time-of-use tariff mechanism.In the second stage,multiple operating scenarios of multiple types of EVs such as cabs,private cars and buses are considered,and the scheduling results of each EV are solved by building an optimization model based on constraints such as queuing theory,Floyd-Warshall algorithm and traffic flow information.In the third stage,the output power of photovoltaic and energy storage systems is fine-tuned in the normal control mode.The charging power of EVs is also regulated in the emergency control mode to reduce the voltage deviation,and the amount of regulation is calculated based on the fair voltage control mode of EVs.Finally,we test the modified IEEE 33-bus distribution system coupled with the 24-bus Beijing TN.The simulation results show that the proposed scheme can mitigate voltage violations well. 展开更多
关键词 electric vehicle transportation network voltage control queuing theory
下载PDF
Analysis for Effects of Temperature Rise of PV Modules upon Driving Distance of Vehicle Integrated Photovoltaic Electric Vehicles
3
作者 Masafumi Yamaguchi Yasuyuki Ota +18 位作者 Taizo Masuda Christian Thiel Anastasios Tsakalidis Arnulf Jaeger-Waldau Kenji Araki Kensuke Nishioka Tatsuya Takamoto Takashi Nakado Kazumi Yamada Tsutomu Tanimoto Yosuke Tomita Yusuke Zushi Kenichi Okumura Takashi Mabuchi Akinori Satou Kyotaro Nakamura Ryo Ozaki Nobuaki Kojima Yoshio Ohshita 《Energy and Power Engineering》 2024年第4期131-150,共20页
The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although ... The development of vehicle integrated photovoltaics-powered electric vehicles (VIPV-EV) significantly reduces CO<sub>2</sub> emissions from the transport sector to realize a decarbonized society. Although long-distance driving of VIPV-EV without electricity charging is expected in sunny regions, driving distance of VIPV-EV is affected by climate conditions such as solar irradiation and temperature rise of PV modules. In this paper, detailed analytical results for effects of climate conditions such as solar irradiation and temperature rise of PV modules upon driving distance of the VIPV-EV were presented by using test data for Toyota Prius and Nissan Van demonstration cars installed with high-efficiency InGaP/GaAs/InGaAs 3-junction solar cell modules with a module efficiency of more than 30%. The temperature rise of some PV modules studied in this study was shown to be expressed by some coefficients related to solar irradiation, wind speed and radiative cooling. The potential of VIPV-EV to be deployed in 10 major cities was also analyzed. Although sunshine cities such as Phoenix show the high reduction ratio of driving range with 17% due to temperature rise of VIPV modules, populous cities such as Tokyo show low reduction ratio of 9%. It was also shown in this paper that the difference between the driving distance of VIPV-EV driving in the morning and the afternoon is due to PV modules’ radiative cooling. In addition, the importance of heat dissipation of PV modules and the development of high-efficiency PV modules with better temperature coefficients was suggested in order to expand driving range of VIPV-EV. The effects of air-conditioner usage and partial shading in addition to the effects of temperature rise of VIPV modules were suggested as the other power losses of VIPV-EV. 展开更多
关键词 Vehicle Integrated Photovoltaics (VIPV) VIPV-Powered electric vehicles Driving Distance PV Modules Solar Irradiation Temperature Rise Radiative Cooling
下载PDF
Stochastic sampled-data multi-objective control of active suspension systems for in-wheel motor driven electric vehicles
4
作者 Iftikhar Ahmad Xiaohua Ge Qing-Long Han 《Journal of Automation and Intelligence》 2024年第1期2-18,共17页
This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus... This paper addresses the sampled-data multi-objective active suspension control problem for an in-wheel motor driven electric vehicle subject to stochastic sampling periods and asynchronous premise variables.The focus is placed on the scenario that the dynamical state of the half-vehicle active suspension system is transmitted over an in-vehicle controller area network that only permits the transmission of sampled data packets.For this purpose,a stochastic sampling mechanism is developed such that the sampling periods can randomly switch among different values with certain mathematical probabilities.Then,an asynchronous fuzzy sampled-data controller,featuring distinct premise variables from the active suspension system,is constructed to eliminate the stringent requirement that the sampled-data controller has to share the same grades of membership.Furthermore,novel criteria for both stability analysis and controller design are derived in order to guarantee that the resultant closed-loop active suspension system is stochastically stable with simultaneous𝐻2 and𝐻∞performance requirements.Finally,the effectiveness of the proposed stochastic sampled-data multi-objective control method is verified via several numerical cases studies in both time domain and frequency domain under various road disturbance profiles. 展开更多
关键词 Active suspension system electric vehicles In-wheel motor Stochastic sampling Dynamic dampers Sampled-data control Multi-objective control
下载PDF
Dynamic grouping control of electric vehicles based on improved k-means algorithm for wind power fluctuations suppression 被引量:1
5
作者 Yang Yu Mai Liu +2 位作者 Dongyang Chen Yuhang Huo Wentao Lu 《Global Energy Interconnection》 EI CSCD 2023年第5期542-553,共12页
To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs base... To address the significant lifecycle degradation and inadequate state of charge(SOC)balance of electric vehicles(EVs)when mitigating wind power fluctuations,a dynamic grouping control strategy is proposed for EVs based on an improved k-means algorithm.First,a swing door trending(SDT)algorithm based on compression result feedback was designed to extract the feature data points of wind power.The gating coefficient of the SDT was adjusted based on the compression ratio and deviation,enabling the acquisition of grid-connected wind power signals through linear interpolation.Second,a novel algorithm called IDOA-KM is proposed,which utilizes the Improved Dingo Optimization Algorithm(IDOA)to optimize the clustering centers of the k-means algorithm,aiming to address its dependence and sensitivity on the initial centers.The EVs were categorized into priority charging,standby,and priority discharging groups using the IDOA-KM.Finally,an two-layer power distribution scheme for EVs was devised.The upper layer determines the charging/discharging sequences of the three EV groups and their corresponding power signals.The lower layer allocates power signals to each EV based on the maximum charging/discharging power or SOC equalization principles.The simulation results demonstrate the effectiveness of the proposed control strategy in accurately tracking grid power signals,smoothing wind power fluctuations,mitigating EV degradation,and enhancing the SOC balance. 展开更多
关键词 electric vehicles Wind power fluctuation smoothing Improved k-means Power allocation Swing door trending
下载PDF
MPC-based Torque Distribution for Planar Motion of Four-wheel Independently Driven Electric Vehicles:Considering Motor Models and Iron Losses 被引量:1
6
作者 Yiyan Su Deliang Liang Peng Kou 《CES Transactions on Electrical Machines and Systems》 CSCD 2023年第1期45-53,共9页
The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly d... The most critical obstacle for four-wheel independently driven electric vehicles(4WID-EVs)is the driving range.Being the actuators of 4WID-EVs,motors account for its major power consumption.In this sense,by properly distributing torques to minimize the power consumption,the driving range of 4WID-EV can be effectively improved.This paper proposes a model predictive control(MPC)-based torque distribution scheme,which minimizes the power consumption of 4WID-EVs while guaranteeing its tracking performance of planar motions.By incorporating the motor model considering iron losses,the optimal torque distribution can be achieved without an additional torque controller.Also,for this reason,the proposed control scheme is computationally efficient,since the power consumption term to be optimized,which is expressed as the product of the motor voltages and currents,is much simpler than that derived from the efficiency map.With reasonable simplification and linearization,the MPC problem is converted to a quadratic programming problem,which can be solved efficiently.The simulation results in MATLAB and CarSim co-simulation environments demonstrate that the proposed scheme effectively reduces power consumption with guaranteed tracking performance. 展开更多
关键词 four-wheel independently driven electric vehicles Model predictive control Motor models Iron losses
下载PDF
Flexible predictive power-split control for battery-supercapacitor systems of electric vehicles using IVHS
7
作者 HE Defeng LUO Jie +1 位作者 LIN Di YU Shiming 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第1期224-235,共12页
The utilization of traffic information received from intelligent vehicle highway systems(IVHS) to plan velocity and split output power for multi-source vehicles is currently a research hotspot. However, it is an open ... The utilization of traffic information received from intelligent vehicle highway systems(IVHS) to plan velocity and split output power for multi-source vehicles is currently a research hotspot. However, it is an open issue to plan vehicle velocity and distribute output power between different supply units simultaneously due to the strongly coupling characteristic of the velocity planning and the power distribution. To address this issue, a flexible predictive power-split control strategy based on IVHS is proposed for electric vehicles(EVs) equipped with battery-supercapacitor system(BSS). Unlike hierarchical strategies to plan vehicle velocity and distribute output power separately, a monolayer model predictive control(MPC) method is employed to optimize them online at the same time. Firstly, a flexible velocity planning strategy is designed based on the signal phase and time(SPAT) information received from IVHS and then the Pontryagin’s minimum principle(PMP) is adopted to formulate the optimal control problem of the BSS. Then, the flexible velocity planning strategy and the optimal control problem of BSS are embedded into an MPC framework, which is online solved using the shooting method in a fashion of receding horizon. Simulation results verify that the proposed strategy achieves a superior performance compared with the hierarchical strategy in terms of transportation efficiency, battery capacity loss, energy consumption and computation time. 展开更多
关键词 electric vehicle(EV) model predictive control(MPC) Pontryagin’s minimum principle(PMP) power-split
下载PDF
A Shifting Strategy for Electric Commercial Vehicles Considering Mass and Gradient Estimation
8
作者 Weiguang Zheng Junzhu Zhang +3 位作者 Shanchao Wang Gaoshan Feng Xiaohong Xu Qiuxiang Ma 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期489-508,共20页
The extended Kalman filter (EKF) algorithm and acceleration sensor measurements were used to identify vehiclemass and road gradient in the work. Four different states of fixed mass, variable mass, fixed slope and vari... The extended Kalman filter (EKF) algorithm and acceleration sensor measurements were used to identify vehiclemass and road gradient in the work. Four different states of fixed mass, variable mass, fixed slope and variableslope were set to simulate real-time working conditions, respectively. A comprehensive electric commercial vehicleshifting strategy was formulated according to the identification results. The co-simulation results showed that,compared with the recursive least square (RLS) algorithm, the proposed algorithm could identify the real-timevehicle mass and road gradient quickly and accurately. The comprehensive shifting strategy formulated had thefollowing advantages, e.g., avoiding frequent shifting of vehicles up the hill, making full use ofmotor braking downthe hill, and improving the overall performance of vehicles. 展开更多
关键词 EKF algorithm electric commercial vehicle vehicle mass road gradient comprehensive shifting strategy
下载PDF
Reinforcement Learning-Based Electric Vehicles Energy Management Strategy with Battery Thermal Model
9
作者 黄淦 曹童杰 +2 位作者 韩俊华 赵萍 张光林 《Journal of Donghua University(English Edition)》 CAS 2023年第1期80-87,共8页
The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning... The promotion of electric vehicles(EVs)is restricted due to their short cruising range.It is desirable to design an effective energy management strategy to improve their energy efficiency.Most existing work concerning energy management strategies focused on hybrids rather than the EVs.The work focusing on the energy management strategy for EVs mainly uses the traditional optimization strategies,thereby limiting the advantages of energy economy.To this end,a novel energy management strategy that considered the impact of battery thermal effects was proposed with the help of reinforcement learning.The main idea was to first analyze the energy flow path of EVs,further formulize the energy management as an optimization problem,and finally propose an online strategy based on reinforcement learning to obtain the optimal strategy.Additionally,extensive simulation results have demonstrated that our strategy reduces energy consumption by at least 27.4%compared to the existing methods. 展开更多
关键词 energy management electric vehicle(EV) reinforcement learning battery thermal management
下载PDF
Design and Implementation of a Battery Big Data Platform Through Intelligent Connected Electric Vehicles
10
作者 Rui Xiong Baoqiang Zhu +2 位作者 Kui Zhang Yanzhou Duan Fengchun Sun 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第2期291-301,共11页
The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for... The development of a battery management algorithm is highly dependent on high-quality battery operation data,especially the data in extreme conditions such as low temperatures.The data in faults are also essential for failure and safety management research.This study developed a battery big data platform to realize vehicle operation,energy interaction and data management.First,we developed an electric vehicle with vehicle navigation and position detection and designed an environmental cabin that allows the vehicle to operate autonomously.Second,charging and heating systems based on wireless energy transfer were developed and equipped on the vehicle to investigate optimal charging and heating methods of the batteries in the vehicle.Third,the data transmission network was designed,a real-time monitoring interface was developed,and the self-developed battery management system was used to measure,collect,upload,and store battery operation data in real time.Finally,experimental validation was performed on the platform.Results demonstrate the efficiency and reliability of the platform.Battery state of charge estimation is used as an example to illustrate the availability of battery operation data. 展开更多
关键词 Intelligent connected electric vehicle BATTERY Operation data State estimation Wireless energy transfer
下载PDF
Combined Estimation of Vehicle Dynamic State and Inertial Parameter for Electric Vehicles Based on Dual Central Difference Kalman Filter Method
11
作者 Xianjian Jin Junpeng Yang +3 位作者 Liwei Xu Chongfeng Wei Zhaoran Wang Guodong Yin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2023年第4期339-354,共16页
Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control s... Distributed drive electric vehicles(DDEVs)possess great advantages in the viewpoint of fuel consumption,environment protection and traffic mobility.Whereas the effects of inertial parameter variation in DDEV control system become much more pronounced due to the drastic reduction of vehicle weights and body size,and inertial parameter has seldom been tackled and systematically estimated.This paper presents a dual central difference Kalman filter(DCDKF)where two Kalman filters run in parallel to simultaneously estimate vehicle different dynamic states and inertial parameters,such as vehicle sideslip angle,vehicle mass,vehicle yaw moment of inertia,the distance from the front axle to centre of gravity.The proposed estimation method only integrates and utilizes real-time measurements of hub torque information and other in-vehicle sensors from standard DDEVs.The four-wheel nonlinear vehicle dynamics estimation model considering payload variations,Pacejka tire model,wheel and motor dynamics model is developed,the observability of the DCDKF observer is analysed and derived via Lie derivative and differential geometry theory.To address system nonlinearities in vehicle dynamics estimation,the DCDKF and dual extended Kalman filter(DEKF)are also investigated and compared.Simulation with various maneuvers are carried out to verify the effectiveness of the proposed method using Matlab/Simulink-CarsimR.The results show that the proposed DCDKF method can effectively estimate vehicle dynamic states and inertial parameters despite the existence of payload variations and variable driving conditions.This research provides a boot-strapping procedure which can performs optimal estimation to estimate simultaneously vehicle system state and inertial parameter with high accuracy and real-time ability. 展开更多
关键词 Distributed drive electric vehicle State observation Inertial parameter Dual central difference Kalman filter
下载PDF
Fault Tree Analysis of the Reliability of Electric Vehicles in India
12
作者 Ritu Gupta 《Journal of Applied Mathematics and Physics》 2023年第7期1930-1944,共15页
Innovations for electric vehicles have advanced quickly in latest decades. Large-scale business use of these vehicles is still constrained by reliability-related issues. By utilising fault tree (FT) and Monte Carlo si... Innovations for electric vehicles have advanced quickly in latest decades. Large-scale business use of these vehicles is still constrained by reliability-related issues. By utilising fault tree (FT) and Monte Carlo simulation, a mathematical prototype is created that includes the reliability traits of all major electrical parts of the vehicle system, including the battery, motor, drive, controllers. The research demonstrates that by raising the component restoration rates, the vehicle’s survivability can be raised. A thorough discussion of this paradigm is provided, along with a presentation and analysis of the reliability estimations based on an electric vehicle. This research on the reliability design and maintenance of an electric vehicle can be supported by the ideas that are outlined in the paper. Additionally, the findings of this study may be helpful to those who build electric vehicle, especially when upgrading the components efficiency and planning for reliability increase. 展开更多
关键词 electric Vehicle Fault Tree Monte Carlo Simulation EV Component Analysis
下载PDF
The Influence of Country of Origin, Brand Awareness, Perceived Risk and Brand Image on Purchase Intention on China Wuling Air Electric Vehicles
13
作者 Xiaoxian Li Rini Setiowati 《Open Journal of Applied Sciences》 CAS 2023年第5期618-635,共18页
In 2019, Indonesia was ranked second with 619,840.03 carbon emissions, after India. Therefore, the Indonesian government issued a zero emission plan in 2022 and encouraged Indonesians to purchase electric vehicles, st... In 2019, Indonesia was ranked second with 619,840.03 carbon emissions, after India. Therefore, the Indonesian government issued a zero emission plan in 2022 and encouraged Indonesians to purchase electric vehicles, striving to achieve zero emissions by 2060. Facing the huge potential market for the development of electric vehicles in Indonesia, the Chinese brand Wuling took this opportunity to launch its first electric vehicle, Wuling Air EV, in Indonesia. This study aims to analyze the influence of the brand image of Wuling electric vehicles, brand awareness, country of origin and perceived risk on the purchase intention of Indonesian consumers. Data collection in this study was carried out through offline and online questionnaires which were distributed to 150 respondents who met the research criteria in the JABODETABEK area, and they all owned cars and had driving experience. Partial Least Squares-Structural Equation Modeling (PLS-SEM) was adopted for data analysis. The results of this study indicate that country of origin, perceived risk, and brand image have a significant effect on consumer purchase intention. In addition, perceived risk also has a significant positive impact on brand image. However, the influence of country of origin and brand awareness has no significant effect on brand image. 展开更多
关键词 Chinese electric vehicles Chinese Brands Indonesian Market Indonesian Consumers
下载PDF
Dynamic Cell Modeling for Accurate SOC Estimation in Autonomous Electric Vehicles
14
作者 Qasim Ajao Lanre Sadeeq 《Journal of Power and Energy Engineering》 2023年第8期1-15,共15页
This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 A... This paper presents findings on dynamic cell modeling for state-of-charge (SOC) estimation in an autonomous electric vehicle (AEV). The studied cells are Lithium-Ion Polymer-based with a nominal capacity of around 8 Ah, optimized for power-needy applications. The AEV operates in a harsh environment with rate requirements up to ±25C and highly dynamic rate profiles, unlike portable-electronic applications with constant power output and fractional C rates. SOC estimation methods effective in portable electronics may not suffice for the AEV. Accurate SOC estimation necessitates a precise cell model. The proposed SOC estimation method utilizes a detailed Kalman-filtering approach. The cell model must include SOC as a state in the model state vector. Multiple cell models are presented, starting with a simple one employing “Coulomb counting” as the state equation and Shepherd’s rule as the output equation, lacking prediction of cell relaxation dynamics. An improved model incorporates filter states to account for relaxation and other dynamics in closed-circuit cell voltage, yielding better performance. The best overall results are achieved with a method combining nonlinear autoregressive filtering and dynamic radial basis function networks. The paper includes lab test results comparing physical cells with model predictions. The most accurate models obtained have an RMS estimation error lower than the quantization noise floor expected in the battery-management-system design. Importantly, these models enable precise SOC estimation, allowing the vehicle controller to utilize the battery pack’s full operating range without overcharging or undercharging concerns. 展开更多
关键词 Autonomous electric Vehicle Modeling Battery Model Battery Management Systems (BMS) Lithium Polymer State of Charge Kalman-Filter
下载PDF
Electric Vehicles Lithium-Polymer Ion Battery Dynamic Behaviour Charging Identification and Modelling Scheme
15
作者 Peter Makeen Hani AGhali +1 位作者 Saim Memon Fang Duan 《Journal of Dynamics, Monitoring and Diagnostics》 2023年第3期170-176,共7页
Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmo... Lithium-ion batteries are considered the substantial electrical storage element for electric vehicles(EVs). The battery model is the basis of battery monitoring, efficient charging, and safety management. Non-linearmodelling is the key to representing the battery and its dynamic internal parameters and performance. This paperproposes a smart scheme to model the lithium-polymer ion battery while monitoring its present charging currentand terminal voltage at various ambient conditions (temperature and relative humidity). Firstly, the suggestedframework investigated the impact of temperature and relative humidity on the charging process using the constantcurrent-constant voltage (CC-CV) charging protocol. This will be followed by monitoring the battery at thesurrounding operating temperature and relative humidity. Hence, efficient non-linear modelling of the EV batterydynamic behaviour using the Hammerstein-Wiener (H-W) model is implemented. The H-W model is considered ablack box model that can represent the battery without any mathematical equivalent circuit model which reducesthe computation complexity. Finally, the model beholds the boundaries of the charging process, not affecting onthe lifetime of the battery. Several dynamic models are applied and tested experimentally to ensure theeffectiveness of the proposed scheme under various ambient conditions where the temperature is fixed at40°C and the relative humidity (RH) at 35%, 52%, and 70%. The best fit using the H-W model reached 91.83% todescribe the dynamic behaviour of the battery with a maximum percentage of error 0.1 V which is in goodagreement with the literature survey. Besides, the model has been scaled up to represent a real EV and expressedthe significance of the proposed H-W model. 展开更多
关键词 battery identification electric vehicles EV fast charging Hammerstein-Wiener Lithium-polymer ion battery
下载PDF
Reliability evaluation of IGBT power module on electric vehicle using big data
16
作者 Li Liu Lei Tang +5 位作者 Huaping Jiang Fanyi Wei Zonghua Li Changhong Du Qianlei Peng Guocheng Lu 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期50-60,共11页
There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction... There are challenges to the reliability evaluation for insulated gate bipolar transistors(IGBT)on electric vehicles,such as junction temperature measurement,computational and storage resources.In this paper,a junction temperature estimation approach based on neural network without additional cost is proposed and the lifetime calculation for IGBT using electric vehicle big data is performed.The direct current(DC)voltage,operation current,switching frequency,negative thermal coefficient thermistor(NTC)temperature and IGBT lifetime are inputs.And the junction temperature(T_(j))is output.With the rain flow counting method,the classified irregular temperatures are brought into the life model for the failure cycles.The fatigue accumulation method is then used to calculate the IGBT lifetime.To solve the limited computational and storage resources of electric vehicle controllers,the operation of IGBT lifetime calculation is running on a big data platform.The lifetime is then transmitted wirelessly to electric vehicles as input for neural network.Thus the junction temperature of IGBT under long-term operating conditions can be accurately estimated.A test platform of the motor controller combined with the vehicle big data server is built for the IGBT accelerated aging test.Subsequently,the IGBT lifetime predictions are derived from the junction temperature estimation by the neural network method and the thermal network method.The experiment shows that the lifetime prediction based on a neural network with big data demonstrates a higher accuracy than that of the thermal network,which improves the reliability evaluation of system. 展开更多
关键词 IGBT junction temperature neural network electric vehicles big data
下载PDF
Innovation and Firm Co-ownership Network in China’s Electric Vehicle Industry
17
作者 JIN Zerun ZHU Shengjun 《Chinese Geographical Science》 SCIE CSCD 2024年第2期195-209,共15页
Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The cur... Firms are embedded in complex networks,where diverse ideas combine and generate new ideas.Shareholders of firms are of-ten seen as critical external resources that have significant influence on firm innovation.The current literature tends to focus on the rela-tionship between firms and their shareholders,while paying less attention to the connections between firms with the same shareholders.This article identifies two types of network spillover effects,intra-city network effect and inter-city network effect,by visualizing the co-ownership networks in China’s electric vehicle(EV)industry.We find that firms with the same shareholders,which are defined as co-owned EV firms,are more innovative than non-co-owned ones.Furthermore,there are two dominant types of firm co-ownership ties formed by corporate and financial institution shareholders.While corporate shareholders help exploiting local tacit knowledge,financial institutions are more active in bridging inter-city connections.The conclusion is confirmed at both firm and city levels.This paper theor-izes the firm co-ownership network as a new form of institutional proximity and tested the result empirically.For policy consideration,we have emphasized the importance of building formal or informal inter-firm network,and the government should further enhance the knowledge flow channel by institutional construction. 展开更多
关键词 firm co-ownership intra-city network inter-city network technological innovation electric vehicle China
下载PDF
Study on site selection planning of urban electric vehicle charging station
18
作者 刘娜 CHENG Jiaxin DUAN Yukai 《High Technology Letters》 EI CAS 2024年第1期75-84,共10页
The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric v... The large-scale development of electric vehicles(EVs)requires numerous charging stations to serve them,and the charging stations should be reasonably laid out and planned according to the charging demand of electric vehicles.Considering the costs of both operators and users,a site selection model for optimal layout planning of charging stations is constructed,and a queuing theory approach is used to determine the charging pile configuration to meet the charging demand in the planning area.To solve the difficulties of particle swarm global optimization search,the improved random drift particle swarm optimization(IRDPSO)and Voronoi diagram are used to jointly solve for the optimal layout of electric vehicles.The final arithmetic analysis verifies the feasibility and practicality of the model and algorithm,and the results show that the total social cost is minimized when the charging station is 9,the location of the charging station is close to the center of gravity and the layout is reasonable. 展开更多
关键词 charging station electric vehicle(EV) improved random drift particle swarm optimization(IRDPSO) optimal planning
下载PDF
Techno-Economic Optimization of Novel Stand-Alone Renewable Based Electric Vehicle Charging Station near Bahria Town Karachi,Sindh Pakistan
19
作者 Aneel Kumar Mahesh Kumar +1 位作者 Amir Mahmood Soomro Laveet Kumar 《Energy Engineering》 EI 2024年第6期1439-1457,共19页
Electric vehicles (EVs) are the most interesting and innovative technology in the 21st century because of theirenormous advantages, both technically and economically. Their emissions rate compared to fuel-based vehicl... Electric vehicles (EVs) are the most interesting and innovative technology in the 21st century because of theirenormous advantages, both technically and economically. Their emissions rate compared to fuel-based vehicles isnegligible as they do not consume fuel and hence do not emit any harmful gases. However, their bulk production,adoption and lack of charging stations increase the stress of power stations due to modern-day lifestyles. If Electricvehicles demand increases drastically then conventional power stations will not bear their demand and if theygenerate electricity by conventional means it will be very costly and may further add greenhouse gases. Therefore,this research provides the techno-economic assessment of a stand-alone renewable-dependent electric vehiclecharging station, excluding any burden on electrical utility. The proposed study is carried out in Bahria Town,Karachi, a city in Pakistan. In this study, HOMER Pro software was utilized for techno-economic assessment. Ahybrid system comprising solar Photovoltaic/Wind Turbine/Fuel cells and battery storage is included in the model.Solar and wind resources were taken from NASA’s website, where charging stations will be integrated. The overallresults show promising in terms of total Net Present Cost and the Cost of Energy which are 2.72M $ and 0.237 $,respectively. The total system generation is 3,598 Megawatt hours per year, and the total energy consumption is 885Megawatt hours per year. 展开更多
关键词 electrical vehicle techno economic analysis solar energy wind energy hydrogen energy
下载PDF
Design and Analysis of Power and Transmission System of Downhole Pure Electric Command Vehicle
20
作者 Md Jahangir Alam Md Shahriar Sujan +1 位作者 Md. Al Imran Tapu Joy Howlader 《Journal of Transportation Technologies》 2024年第1期31-52,共22页
Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technol... Electric vehicles use electric motors, which turn electrical energy into mechanical energy. As electric motors are conventionally used in all the industry, it is an established development site. It’s a mature technology with ideal power and torque curves for vehicular operation. Conventional vehicles use oil and gas as fuel or energy storage. Although they also have an excellent economic impact, the continuous use of oil and gas threatened the world’s reservation of total oil and gas. Also, they emit carbon dioxide and some toxic ingredients through the vehicle’s tailpipe, which causes the greenhouse effect and seriously impacts the environment. So, as an alternative, electric car refers to a green technology of decarbonization with zero emission of greenhouse gases through the tailpipe. So, they can remove the problem of greenhouse gas emissions and solve the world’s remaining non-renewable energy storage problem. Pure electric vehicles (PEV) can be applied in all spheres, but their special implementation can only be seen in downhole operations. They are used for low noise and less pollution in the downhole process. In this study, the basic structure of the pure electric command vehicle is studied, the main components of the command vehicle power system, namely the selection of the drive motor and the power battery, are analyzed, and the main parameters of the drive motor and the power battery are designed and calculated. The checking calculation results show that the power and transmission system developed in this paper meets the design requirements, and the design scheme is feasible and reasonable. 展开更多
关键词 Pure electric vehicles TRANSMISSION GEARS Electronic Differential Control Algorithms
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部