期刊文献+
共找到46,488篇文章
< 1 2 250 >
每页显示 20 50 100
Multiplicity in Continuous Adiabatic MSMPR Reactive Precipitators 被引量:2
1
作者 尹秋响 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 1998年第2期48-58,共11页
The possibility of both concentration and temperature multiplicities has bcen studied for the case of acontinuous adiabatic mixed suspension mixed product removal(MSMPR)reactive precipitaior.A Process in-volving homog... The possibility of both concentration and temperature multiplicities has bcen studied for the case of acontinuous adiabatic mixed suspension mixed product removal(MSMPR)reactive precipitaior.A Process in-volving homogeneous chemical reaction in first order reaction kinetics with respect to each of the reactive compo-nents and subsequent crystallization described by conventional power law growth and power law magma depen-dent nucleation models is considered.The temperature dependency of each of these kinetics is described by Ar-rhenius relations.Parameter regions are determined in which multiple steady states exist.The linear stability ofthese steady states is analyzed by using the Routh criterion approach. 展开更多
关键词 MULTIPLICITY MSMPR CRYSTALLIZER REACTIVE precipitATION stability
下载PDF
Analysis of the operating parameters of a vortex electrostatic precipitator 被引量:3
2
作者 Congxiang LU Chengwu YI +1 位作者 Rongiie YI Shiwen LIU 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第2期69-78,共10页
A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion... A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection. 展开更多
关键词 fine particles vortex electrostatic precipitator regression model optimization design vortex flow field
下载PDF
Process simulation and optimization of flow field in wet electrostatic precipitator 被引量:6
3
作者 YE Xing-lian WANG Shuai +3 位作者 ZHANG Hao AN Xi-zhong GUO Bao-yu LI Li-feng 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期132-143,共12页
To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collec... To improve the dust removal performance of the wet electrostatic precipitator(WESP), a flow field optimization scheme was proposed via CFD simulation in different scales. The simplified models of perforated and collection plates were determined firstly. Then the model parameters for the resistance of perforated and collection plates, obtained by small-scale flow simulation, were validated by medium-scale experiments. Through the comparison of the resistance and velocity distribution between simulation results and experimental data, the simplified model is proved to present the resistance characteristics of perforated and collection plates accurately. Numerical results show that after optimization, both the flow rate and the pressure drop in the upper room of electric field regions are basically equivalent to those of the lower room, and the velocity distribution in flue inlet of WESP becomes more uniform. Through the application in practice, the effectiveness and reliability of the optimization scheme are proved, which can provide valuable reference for further optimization of WESP. 展开更多
关键词 process simulation OPTIMIZATION flow field wet electrostatic precipitator perforated plate collection plate
下载PDF
Pyrometallurgical Removal of Arsenic from Electrostatic Precipitators Dusts of Copper Smelting 被引量:1
4
作者 Hector Henao Ignacio Paredes +1 位作者 Rodrigo Diaz Javier Ortiz 《Journal of Minerals and Materials Characterization and Engineering》 2021年第6期545-565,共21页
This work describes the experimental results of pyrometallurgical removing of arsenic from the dust collected in the electrostatic copper precipitators within the gas cleaning system of a Copper Flash Smelting Furnace... This work describes the experimental results of pyrometallurgical removing of arsenic from the dust collected in the electrostatic copper precipitators within the gas cleaning system of a Copper Flash Smelting Furnace. The generation of dust in the copper smelting worldwide ranges from 2 - 15 wt% per ton of a copper concentrate. In Chile, copper smelters produce approximately 110 kt/y of dust with a concentration of arsenic between 1 and 15 wt%. The dust is a complex of metals oxides and sulfurs with copper concentrations greater than 10 wt% and relatively high silver concentrations. Since its high arsenic concentration, it is difficult to recover valuable metals through hydrometallurgical processes or by direct recirculation of the dust in a smelting furnace. Thus, the development of pyrometallurgical processes aimed at reducing the concentration of arsenic in the dust (<0.5 wt%) is the main objective of this study, giving particular attention to the production of a suitable material to be recirculated in operations of copper smelting. The work provides a detailed characterization of the dust including the Quantitative Evaluation of Minerals by Scanning Electron Microscopy (QEMSCAN), Scanning Electron Microscope-Energy Dispersive X-ray Analysis (SEM/EDS), X-Ray Diffraction (XRD), the elemental chemical analysis using Atomic Adsorption (AAS), and X-Ray Fluorescence (X-RF). By considering that arsenic volatilization requires a process of sulfidation-decomposition-oxidation, this work seeks to explore the roasting of mixtures of copper concentrate/dust, sulfur/dust, and pyrrhotite/dust. By the elemental chemical analysis of the mixture after and before the roasting process, the degree of arsenic volatilization was determined. The results indicated the effects of parameters such as roasting temperature, gas flow, gas composition, and the ratio of mixtures (concentrate/dust, sulfur/dust, or pyrrhotite/dust) on the volatilization of arsenic. According to the findings, the concentration of arsenic in the roasted Flash Smelting dust can be reduced to a relatively low level (<0.5 wt%), which allows its recirculation into an smelting process. 展开更多
关键词 Copper Smelter Dust Electrostatic precipitators of Copper Removal of Arsenic SULFIDATION Roasting Process
下载PDF
Investigation on the Sediment Characteristics of the Electrostatic Cyclonic Precipitator
5
作者 李明华 马朝臣 +1 位作者 魏名山 吴千里 《Journal of Beijing Institute of Technology》 EI CAS 2006年第1期39-42,共4页
In order to find out the relationship between the sediment characteristics and collecting efficiency of the electrostatic cyclonic precipitator, an online study for the sediment characteristics of electrostatic cyclon... In order to find out the relationship between the sediment characteristics and collecting efficiency of the electrostatic cyclonic precipitator, an online study for the sediment characteristics of electrostatic cyclonic precipitator had been done with Kompton back scatter method, with the collecting efficiency tested at the same time. And the relationship between the sediment characteristics and the collecting efficiency was gotten. The sediment thickness increased with time extended and the concentration increased when the inlet velocity was fixed. The collecting efficiency increased with the inlet velocity increased, but dropped with the concentration increased. When the concentration and inlet velocity were fixed, the collecting efficiency drop a little with the increase of sediment thickness. The sediment would decrease the corona current in the collecting filed, which would make the electrostatic effect fall, then made the collecting efficiency drop a little. 展开更多
关键词 electrostatic cyclonic precipitator radial check sediment characteristic online
下载PDF
Effect of drying-wetting cycles on pore characteristics and mechanical properties of enzyme-induced carbonate precipitation-reinforced sea sand 被引量:3
6
作者 Ming Huang Kai Xu +2 位作者 Zijian Liu Chaoshui Xu Mingjuan Cui 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期291-302,共12页
Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic character... Enzyme-induced carbonate precipitation(EICP)is an emanating,eco-friendly and potentially sound technique that has presented promise in various geotechnical applications.However,the durability and microscopic characteristics of EICP-treated specimens against the impact of drying-wetting(D-W)cycles is under-explored yet.This study investigates the evolution of mechanical behavior and pore charac-teristics of EICP-treated sea sand subjected to D-W cycles.The uniaxial compressive strength(UCS)tests,synchrotron radiation micro-computed tomography(micro-CT),and three-dimensional(3D)recon-struction of CT images were performed to study the multiscale evolution characteristics of EICP-reinforced sea sand under the effect of D-W cycles.The potential correlations between microstructure characteristics and macro-mechanical property deterioration were investigated using gray relational analysis(GRA).Results showed that the UCS of EICP-treated specimens decreases by 63.7% after 15 D-W cycles.The proportion of mesopores gradually decreases whereas the proportion of macropores in-creases due to the exfoliated calcium carbonate with increasing number of D-W cycles.The micro-structure in EICP-reinforced sea sand was gradually disintegrated,resulting in increasing pore size and development of pore shape from ellipsoidal to columnar and branched.The gray relational degree suggested that the weight loss rate and UCS deterioration were attributed to the development of branched pores with a size of 100-1000 m m under the action of D-W cycles.Overall,the results in this study provide a useful guidancee for the long-term stability and evolution characteristics of EICP-reinforced sea sand under D-W weathering conditions. 展开更多
关键词 Enzyme-induced carbonate precipitation(EICP) Plant-based urease Drying-wetting(D-W)cycles Microstructure
下载PDF
Application of High-Voltage Power Supply on Electrostatic Precipitator
7
作者 Yan-Jie Li Yu-Xiang Chen 《World Journal of Engineering and Technology》 2017年第2期269-274,共6页
This article firstly describes the main technical parameters and performance of the high power supply of electrostatic precipitator, and then describes the structure, principle and characteristic of power supply of el... This article firstly describes the main technical parameters and performance of the high power supply of electrostatic precipitator, and then describes the structure, principle and characteristic of power supply of electrostatic precipitator, and finally analyses the common faults of power supply of electrostatic precipitator in the operation and puts forward the methods of dealing with breakdown. Operation results show that the system is stable and reliable, and overall performance and the efficiency of dust control have been improved significantly. The scheme has been well applied in the field of environmental protection and dust removal. 展开更多
关键词 ELECTROSTATIC precipitator HIGH-VOLTAGE Power Supply SPARK DISCHARGE
下载PDF
Effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on tensile and bending properties of high-Al-containing Mg alloys 被引量:1
8
作者 Sumi Jo Gyo Myeong Lee +2 位作者 Jong Un Lee Young Min Kim Sung Hyuk Park 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期779-793,共15页
This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The ext... This study investigates the effect of characteristics and distribution of Mg_(17)Al_(12)precipitates on the uniaxial tensile and three-point bending properties of extruded Mg alloys containing high Al contents.The extruded Mg–9Al–1Zn–0.3Mn(AZ91)alloy contains lamellar-structured Mg_(17)Al_(12)discontinuous precipitates along the grain boundaries,which are formed via static precipitation during natural air cooling.The extruded Mg–11Al–1Zn–0.3Mn(AZ111)alloy contains spherical Mg_(17)Al_(12)precipitates at the grain boundaries and inside the grains,which are formed via dynamic precipitation during extrusion.Due to inhomogeneous distribution of precipitates,the AZ111 alloy consists of two different precipitate regions:precipitate-rich region with numerous precipitates and finer grains and precipitate-scarce region with a few precipitates and coarser grains.The AZ111 alloy exhibits a higher tensile strength than the AZ91 alloy because its smaller grain size and more abundant precipitates result in stronger grain-boundary hardening and precipitation hardening effects,respectively.However,the tensile elongation of the AZ111 alloy is lower than that of the AZ91 alloy because the weak cohesion between the dynamic precipitates and the matrix facilitates the crack initiation and propagation.During bending,a macrocrack initiates on the outer surface of bending specimen in both alloys.The AZ111 alloy exhibits higher bending yield strength and lower failure bending strain than the AZ91 alloy.The bending specimens of the AZ91 alloy have similar bending formability,whereas those of the AZ111 alloy exhibit considerable differences in bending formability and crack propagation behavior,depending on the distribution and number density of precipitates in the specimen.In bending specimens of the AZ111 alloy,it is found that the failure bending strain(ε_(f,bending))is inversely proportional to the area fraction of precipitates in the outer zone of bending specimen(A_(ppt)),with a relationship ofε_(f,bending)=–0.1A_(ppt)+5.86. 展开更多
关键词 Mg–Al alloy EXTRUSION BENDING precipitation Microstructure
下载PDF
Spatio-Temporal Characteristics of Heavy Precipitation Forecasts from ECMWF in Eastern China 被引量:1
9
作者 徐同 谭燕 顾问 《Journal of Tropical Meteorology》 SCIE 2024年第1期29-41,共13页
This study examines the spatio-temporal characteristics of heavy precipitation forecasts in eastern China from the European Centre for Medium-Range Weather Forecasts(ECMWF) using the time-domain version of the Method ... This study examines the spatio-temporal characteristics of heavy precipitation forecasts in eastern China from the European Centre for Medium-Range Weather Forecasts(ECMWF) using the time-domain version of the Method for Object-based Diagnostic Evaluation(MODE-TD). A total of 23 heavy rainfall cases occurring between 2018 and 2021 are selected for analysis. Using Typhoon “Rumbia” as a case study, the paper illustrates how the MODE-TD method assesses the overall simulation capability of models for the life history of precipitation systems. The results of multiple tests with different parameter configurations reveal that the model underestimates the number of objects’ forecasted precipitation tracks, particularly at smaller radii. Additionally, the analysis based on centroid offset and area ratio tests for different classified precipitation objects indicates that the model performs better in predicting large-area, fast-moving, and longlifespan precipitation objects. Conversely, it tends to have less accurate predictions for small-area, slow-moving, and shortlifespan precipitation objects. In terms of temporal characteristics, the model overestimates the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. In terms of temporal characteristics, the model tends to overestimate the forecasted movement speed for precipitation objects with small-area, slow movement, or both long and short lifespans while underestimating it for precipitation with fast movement. Overall, the model provides more accurate predictions for the duration and dissipation of precipitation objects with large-area or long-lifespan(such as typhoon precipitation) while having large prediction errors for precipitation objects with small-area or short-lifespan. Furthermore, the model’s simulation results regarding the generation of precipitation objects show that it performs relatively well in simulating the generation of large-area and fast-moving precipitation objects. However, there are significant differences in the forecasted generation of small-area and slow-moving precipitation objects after 9 hours. 展开更多
关键词 MODE-TD ECMWF heavy precipitation Eastern China
下载PDF
Future changes in precipitation and water availability over the Tibetan Plateau projected by CMIP6 models constrained by climate sensitivity 被引量:1
10
作者 Hui Qiu Tianjun Zhou +3 位作者 Liwei Zou Jie Jiang Xiaolong Chen Shuai Hu 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期40-46,共7页
Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assesse... Precipitation projections over the Tibetan Plateau(TP)show diversity among existing studies,partly due to model uncertainty.How to develop a reliable projection remains inconclusive.Here,based on the IPCC AR6–assessed likely range of equilibrium climate sensitivity(ECS)and the climatological precipitation performance,the authors constrain the CMIP6(phase 6 of the Coupled Model Intercomparison Project)model projection of summer precipitation and water availability over the TP.The best estimates of precipitation changes are 0.24,0.25,and 0.45 mm d^(−1)(5.9%,6.1%,and 11.2%)under the Shared Socioeconomic Pathway(SSP)scenarios of SSP1–2.6,SSP2–4.5,and SSP5–8.5 from 2050–2099 relative to 1965–2014,respectively.The corresponding constrained projections of water availability measured by precipitation minus evaporation(P–E)are 0.10,0.09,and 0.22 mm d^(−1)(5.7%,4.9%,and 13.2%),respectively.The increase of precipitation and P–E projected by the high-ECS models,whose ECS values are higher than the upper limit of the likely range,are about 1.7 times larger than those estimated by constrained projections.Spatially,there is a larger increase in precipitation and P–E over the eastern TP,while the western part shows a relatively weak difference in precipitation and a drier trend in P–E.The wetter TP projected by the high-ECS models resulted from both an approximately 1.2–1.4 times stronger hydrological sensitivity and additional warming of 0.6℃–1.2℃ under all three scenarios during 2050–2099.This study emphasizes that selecting climate models with climate sensitivity within the likely range is crucial to reducing the uncertainty in the projection of TP precipitation and water availability changes. 展开更多
关键词 Tibetan plateau Climate sensitivity precipitation projection Water availability projection
下载PDF
Assessment of Wet Season Precipitation in the Central United States by the Regional Climate Simulation of the WRFG Member in NARCCAP and Its Relationship with Large-Scale Circulation Biases 被引量:1
11
作者 Yating ZHAO Ming XUE +2 位作者 Jing JIANG Xiao-Ming HU Anning HUANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第4期619-638,共20页
Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss pos... Assessment of past-climate simulations of regional climate models(RCMs)is important for understanding the reliability of RCMs when used to project future regional climate.Here,we assess the performance and discuss possible causes of biases in a WRF-based RCM with a grid spacing of 50 km,named WRFG,from the North American Regional Climate Change Assessment Program(NARCCAP)in simulating wet season precipitation over the Central United States for a period when observational data are available.The RCM reproduces key features of the precipitation distribution characteristics during late spring to early summer,although it tends to underestimate the magnitude of precipitation.This dry bias is partially due to the model’s lack of skill in simulating nocturnal precipitation related to the lack of eastward propagating convective systems in the simulation.Inaccuracy in reproducing large-scale circulation and environmental conditions is another contributing factor.The too weak simulated pressure gradient between the Rocky Mountains and the Gulf of Mexico results in weaker southerly winds in between,leading to a reduction of warm moist air transport from the Gulf to the Central Great Plains.The simulated low-level horizontal convergence fields are less favorable for upward motion than in the NARR and hence,for the development of moist convection as well.Therefore,a careful examination of an RCM’s deficiencies and the identification of the source of errors are important when using the RCM to project precipitation changes in future climate scenarios. 展开更多
关键词 NARCCAP Central United States precipitATION low-level jet large-scale environment diurnal variation
下载PDF
Impacts of Future Changes in Heavy Precipitation and Extreme Drought on the Economy over South China and Indochina 被引量:1
12
作者 Bin TANG Wenting HU +4 位作者 Anmin DUAN Yimin LIU Wen BAO Yue XIN Xianyi YANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1184-1200,I0022-I0034,共30页
Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distribut... Heavy precipitation and extreme drought have caused severe economic losses over South China and Indochina(INCSC)in recent decades.Given the areas with large gross domestic product(GDP)in the INCSC region are distributed along the coastline and greatly affected by global warming,understanding the possible economic impacts induced by future changes in the maximum consecutive 5-day precipitation(RX5day)and the maximum consecutive dry days(CDD)is critical for adaptation planning in this region.Based on the latest data released by phase 6 of the Coupled Model Intercomparison Project(CMIP6),future projections of precipitation extremes with bias correction and their impacts on GDP over the INCSC region under the fossil-fueled development Shared Socioeconomic Pathway(SSP5-8.5)are investigated.Results indicate that RX5day will intensify robustly throughout the INCSC region,while CDD will lengthen in most regions under global warming.The changes in climate consistently dominate the effect on GDP over the INCSC region,rather than the change of GDP.If only considering the effect of climate change on GDP,the changes in precipitation extremes bring a larger impact on the economy in the future to the provinces of Hunan,Jiangxi,Fujian,Guangdong,and Hainan in South China,as well as the Malay Peninsula and southern Cambodia in Indochina.Thus,timely regional adaptation strategies are urgent for these regions.Moreover,from the sub-regional average viewpoint,over two thirds of CMIP6 models agree that maintaining a lower global warming level will reduce the economic impacts from heavy precipitation over the INCSC region. 展开更多
关键词 CMIP6 heavy precipitation extreme drought South China INDOCHINA economic impact
下载PDF
Time-lagged Effects of the Spring Atmospheric Heat Source over the Tibetan Plateau on Summer Precipitation in Northeast China during 1961–2020:Role of Soil Moisture 被引量:1
13
作者 Yizhe HAN Dabang JIANG +2 位作者 Dong SI Yaoming MA Weiqiang MA 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第8期1527-1538,共12页
The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in N... The spring atmospheric heat source(AHS)over the Tibetan Plateau(TP)has been suggested to affect the Asian summer monsoon and summer precipitation over South China.However,its influence on the summer precipitation in Northeast China(NEC)remains unknown.The connection between spring TP AHS and subsequent summer precipitation over NEC from 1961 to 2020 is analyzed in this study.Results illustrate that stronger spring TP AHS can enhance subsequent summer NEC precipitation,and higher soil moisture in the Yellow River Valley-North China region(YRVNC)acts as a bridge.During spring,the strong TP AHS could strengthen the transportation of water vapor to East China and lead to excessive rainfall in the YRVNC.Thus,soil moisture increases,which regulates local thermal conditions by decreasing local surface skin temperature and sensible heat.Owing to the memory of soil moisture,the lower spring sensible heat over the YRVNC can last until mid-summer,decrease the land–sea thermal contrast,and weaken the southerly winds over the East Asia–western Pacific region and convective activities over the South China Sea and tropical western Pacific.This modulates the East Asia–Pacific teleconnection pattern,which leads to a cyclonic anomaly and excessive summer precipitation over NEC. 展开更多
关键词 Tibetan Plateau atmospheric heat source Northeast China summer precipitation soil moisture
下载PDF
Differences in spring precipitation over southern China associated with multiyear La Ni?a events 被引量:1
14
作者 Guangliang Li Licheng Feng +3 位作者 Wei Zhuang Fei Liu Ronghua Zhang Cuijuan Sui 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第2期1-10,共10页
Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-... Composite analyses were performed in this study to reveal the difference in spring precipitation over southern China during multiyear La Ni?a events during 1901 to 2015. It was found that there is significantly below-normal precipitation during the first boreal spring, but above-normal precipitation during the second year. The difference in spring precipitation over southern China is correlative to the variation in western North Pacific anomalous cyclone(WNPC), which can in turn be attributed to the different sea surface temperature anomaly(SSTA) over the Tropical Pacific. The remote forcing of negative SSTA in the equatorial central and eastern Pacific and the local air-sea interaction in the western North Pacific are the usual causes of WNPC formation and maintenance.SSTA in the first spring is stronger than those in the second spring. As a result, the intensity of WNPC in the first year is stronger, which is more likely to reduce the moisture in southern China by changing the moisture transport, leading to prolonged precipitation deficits over southern China. However, the tropical SSTA signals in the second year are too weak to induce the formation and maintenance of WNPC and the below-normal precipitation over southern China. Thus, the variation in tropical SSTA signals between two consecutive springs during multiyear La Ni?a events leads to obvious differences in the spatial pattern of precipitation anomaly in southern China by causing the different WNPC response. 展开更多
关键词 multiyear La Nina precipitation anomaly anomalous western North Pacific cyclone southern China
下载PDF
Interdecadal variability of summer precipitation in the Three River Source Region: Influences of SST and zonal shifts of the East Asian subtropical westerly jet 被引量:1
15
作者 Yumeng Liu Xianhong Meng +5 位作者 Lin Zhao S-Y.Simon Wang Lixia Zhang Zhaoguo Li Chan Wang Yingying An 《Atmospheric and Oceanic Science Letters》 CSCD 2024年第5期47-53,共7页
Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the i... Summer precipitation in the Three Rivers Source Region(TRSR)of China is vital for the headwaters of the Yellow,Yangtze,and Lancang rivers and exhibits significant interdecadal variability.This study investigates the influence of the East Asian westerly jet(EAWJ)on TRSR rainfall.A strong correlation is found between TRSR summer precipitation and the Jet Zonal Position Index(JZPI)of the EAWJ from 1961 to 2019(R=0.619,p<0.01).During periods when a positive JZPI indicates a westward shift in the EAWJ,enhanced water vapor anomalies,warmer air,and low-level convergence anomalies contribute to increased TRSR summer precipitation.Using empirical orthogonal function and regression analyses,this research identifies the influence of large-scale circulation anomalies associated with the Atlantic–Eurasian teleconnection(AEA)from the North Atlantic(NA).The interdecadal variability between the NA and central tropical Pacific(CTP)significantly affects TRSR precipitation.This influence is mediated through the AEA via a Rossby wave train extending eastward along the EAWJ,and another south of 45°N.Moreover,the NA–CTP Opposite Phase Index(OPI),which quantifies the difference between the summer mean sea surface temperatures of the NA and the CTP,is identified as a critical factor in modulating the strength of this teleconnection and influencing the zonal position of the EAWJ. 展开更多
关键词 Summer precipitation East Asian subtropical westerly jet Three River Source Region Atlantic-Eurasian teleconnection
下载PDF
Coupled multiphysical model for investigation of influence factors in the application of microbially induced calcite precipitation 被引量:1
16
作者 Xuerui Wang Pavan Kumar Bhukya +1 位作者 Dali Naidu Arnepalli Shuang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2232-2249,共18页
The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiph... The study presents a comprehensive coupled thermo-bio-chemo-hydraulic(T-BCH)modeling framework for stabilizing soils using microbially induced calcite precipitation(MICP).The numerical model considers relevant multiphysics involved in MICP,such as bacterial ureolytic activities,biochemical reactions,multiphase and multicomponent transport,and alteration of the porosity and permeability.The model incorporates multiphysical coupling effects through well-established constitutive relations that connect parameters and variables from different physical fields.It was implemented in the open-source finite element code OpenGeoSys(OGS),and a semi-staggered solution strategy was designed to solve the couplings,allowing for flexible model settings.Therefore,the developed model can be easily adapted to simulate MICP applications in different scenarios.The numerical model was employed to analyze the effect of various factors,including temperature,injection strategies,and application scales.Besides,a TBCH modeling study was conducted on the laboratory-scale domain to analyze the effects of temperature on urease activity and precipitated calcium carbonate.To understand the scale dependency of MICP treatment,a large-scale heterogeneous domain was subjected to variable biochemical injection strategies.The simulations conducted at the field-scale guided the selection of an injection strategy to achieve the desired type and amount of precipitation.Additionally,the study emphasized the potential of numerical models as reliable tools for optimizing future developments in field-scale MICP treatment.The present study demonstrates the potential of this numerical framework for designing and optimizing the MICP applications in laboratory-,prototype-,and field-scale scenarios. 展开更多
关键词 MULTIPHYSICS Microbially induced calcite precipitation(MICP) Coupled thermo-bio-chemo-hydraulic(TBCH) model OpenGeoSys(OGS) Influence factors
下载PDF
Comparison of methods for vibration analysis of electrostatic precipitators
17
作者 Iwona Adamiec-Wójcik Andrzej Nowak Stanisaw Wojciech 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第1期72-79,共8页
The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for cal... The paper presents two methods for the formulation of free vibration analysis of collecting electrodes of precipitators.The first,called the hybrid finite element method, combines the finit element method used for calculations of spring deformations with the rigid finite element method used to reflect mass and geometrical features,which is called the hybrid finite element method.As a result,a model with a diagonal mass matrix is obtained.Due to a specific geometry of the electrodes,which are long plates of complicated shapes,the second method proposed is the strip method which is a semi-analytical method.The strip method allows us to formulate the equations of motion with a considerably smaller number of generalized coordinates.Results of numerical calculations obtained by both methods are compared with those obtained using commercial software like ANSYS and ABAQUS.Good compatibility of results is achieved. 展开更多
关键词 Finite element method · Rigid finite element method · Strip method · Free vibration analysis · Electrostatic precipitators
下载PDF
The GNSS PWV retrieval using non-observation meteorological parameters based on ERA5 and its relation with precipitation
18
作者 Weifeng Yang Zhiping Chen +2 位作者 Kaiyun Lv Pengfei Xia Tieding Lu 《Geodesy and Geodynamics》 EI CSCD 2024年第3期302-313,共12页
The pressure and temperature significantly influence precipitable water vapor(PWV) retrieval. Global Navigation Satellite System(GNSS) PWV retrieval is limited because the GNSS stations lack meteorological sensors. Fi... The pressure and temperature significantly influence precipitable water vapor(PWV) retrieval. Global Navigation Satellite System(GNSS) PWV retrieval is limited because the GNSS stations lack meteorological sensors. First, this article evaluated the accuracy of pressure and temperature in 68 radiosonde stations in China based on ERA5 Reanalysis data from 2015 to 2019 and compared them with GPT3model. Then, the accuracy of pressure and temperature calculated by ERA5 were estimated in 5 representative IGS stations in China. And the PWV calculated by these meteorological parameters from ERA5(ERA5-PWV) were analyzed. Finally, the relation between ERA5-PWV and precipitation was deeply explored using wavelet coherence analysis in IGS stations. These results indicate that the accuracy of pressure and temperature of ERA5 is better than the GPT3 model. In radiosonde stations, the mean BIAS and MAE of pressure and temperature in ERA5 are-0.41/1.15 hpa and-0.97/2.12 K. And the mean RMSEs are 1.35 hpa and 2.87 K, which improve 74.77% and 40.58% compared with GPT3 model. The errors of pressure and temperature of ERA5 are smaller than the GPT3 model in bjfs, hksl and wuh2, and the accuracy of ERA5-PWV is improved by 18.77% compared with the GPT3 model. In addition, there is a significant positive correlation between ERA5-PWV and precipitation. And precipitation is always associated with the sharp rise of ERA5-PWV, which provides important references for rainfall prediction. 展开更多
关键词 ERA5 GNSS precipitable water vapor precipitATION Wavelet coherence analysis
下载PDF
A New Algorithm of Rain Type Classification for GPM Dual-Frequency Precipitation Radar in Summer Tibetan Plateau
19
作者 Yunfei FU Liu YANG +4 位作者 Zhenhao WU Peng ZHANG Songyan GU Lin CHEN Sun NAN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2093-2111,共19页
In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2... In this study, a new rain type classification algorithm for the Dual-Frequency Precipitation Radar(DPR) suitable over the Tibetan Plateau(TP) was proposed by analyzing Global Precipitation Measurement(GPM) DPR Level-2 data in summer from 2014 to 2020. It was found that the DPR rain type classification algorithm(simply called DPR algorithm) has mis-identification problems in two aspects in summer TP. In the new algorithm of rain type classification in summer TP,four rain types are classified by using new thresholds, such as the maximum reflectivity factor, the difference between the maximum reflectivity factor and the background maximum reflectivity factor, and the echo top height. In the threshold of the maximum reflectivity factors, 30 d BZ and 18 d BZ are both thresholds to separate strong convective precipitation, weak convective precipitation and weak precipitation. The results illustrate obvious differences of radar reflectivity factor and vertical velocity among the three rain types in summer TP, such as the reflectivity factor of most strong convective precipitation distributes from 15 d BZ to near 35 d BZ from 4 km to 13 km, and increases almost linearly with the decrease in height. For most weak convective precipitation, the reflectivity factor distributes from 15 d BZ to 28 d BZ with the height from 4 km to 9 km. For weak precipitation, the reflectivity factor mainly distributes in range of 15–25 d BZ with height within 4–10 km. It is also shows that weak precipitation is the dominant rain type in summer TP, accounting for 40%–80%,followed by weak convective precipitation(25%–40%), and strong convective precipitation has the least proportion(less than 30%). 展开更多
关键词 satellite precipitation radar rain type classification method Tibetan Plateau strong convective precipitation
下载PDF
The Influence of Airflow Transport Pathways on Precipitation during the Rainy Season in the Liupan Mountains of Northwest China
20
作者 Yujun QIU Chunsong LU +1 位作者 Zhiliang SHU Peiyun DENG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第11期2215-2229,共15页
This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data f... This study investigates the influence of airflow transport pathways on seasonal rainfall in the mountainous region of the Liupan Mountains(LM) during the rainy seasons from 2020 to 2022, utilizing observational data from seven ground gradient stations located on the eastern slopes, western slopes, and mountaintops combined with backward trajectory cluster analysis. The results indicate 1) that the LM's rainy season, characterized by overcast and rainy days, is mainly influenced by cold and moist airflows(CMAs) from the westerly direction and warm and moist airflows(WMAs) from a slightly southern direction. The precipitation amounts under four airflow transport paths are ranked from largest to smallest as follows: WMAs, CMAs, warm dry airflows(WDAs), and cold dry airflows(CDAs). 2) WMAs contribute significantly more to the intensity of regional precipitation than the other three types of airflows. During localized precipitation events,warm airflows have higher precipitation intensities at night than cold airflows, while the opposite is true during the afternoon. 3) During regional precipitation events, water vapor content is the primary influencing factor. Precipitation characteristics under humid airflows are mainly affected by high water vapor content, whereas during dry airflow precipitation, dynamic and thermodynamic factors have a more pronounced impact. 4) During localized precipitation events, the influence of dynamic and thermodynamic factors is more complex than during regional precipitation, with the precipitation characteristics of the four airflows closely related to their water vapor content, air temperature and humidity attributes, and orographic lifting. 5) Compared to regional precipitation, the influence of topography is more prominent in localized precipitation processes. 展开更多
关键词 regional precipitation localized precipitation airflow transport water vapor flux instability energy topographic influence
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部