Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyp...Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyperelastic-magnetic coupling problems is proposed.Since the solution space consists of two-phase domains,two separate networks are constructed to independently predict the solution for each phase region.In addition,a conscious point allocation strategy is incorporated to enhance the prediction precision of the PINN in regions characterized by sharp gradients.With the developed framework,the magnetic fields and deformation fields of magnetorheological elastomers(MREs)are solved under the control of hyperelastic-magnetic coupling equations.Illustrative examples are provided and contrasted with the reference results to validate the predictive accuracy of the proposed framework.Moreover,the advantages of the proposed framework in solving hyperelastic-magnetic coupling problems are validated,particularly in handling small data sets,as well as its ability in swiftly and precisely forecasting magnetostrictive motion.展开更多
Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic ...Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.展开更多
In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the...In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information.展开更多
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f...This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.展开更多
We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a n...We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.展开更多
Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from ...Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from network and control engineers.In particular,it is urgent to design intervention schemes for the coevolutionary dynamics between information diffusion processes and coupled networks.For this purpose,we comprehensively study the problem of information diffusion intervention over static and temporal coupling networks.First,individual interactions are described by a modified activitydriven network(ADN)model.Then,we establish a novel node-based susceptible-infected-recovered-susceptible(SIRS)model to characterize the information diffusion dynamics.On these bases,three synergetic intervention strategies are formulated.Second,we derive the critical threshold of the controlled-SIRS system via stability analysis.Accordingly,we exploit a spectral optimization scheme to minimize the outbreak risk or the required budget.Third,we develop an optimal control scheme of dynamically allocating resources to minimize both system loss and intervention expense,in which the optimal intervention inputs are obtained through optimal control theory and a forward-backward sweep algorithm.Finally,extensive simulation results validate the accuracy of theoretical derivation and the performance of our proposed intervention schemes.展开更多
In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical cr...In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.展开更多
Based on the introduction of the connotations and characteristics of tourism industrial eco-network,it has expatiated on the connotations of and approaches to enterprise coupling in tourism industrial eco-network.As t...Based on the introduction of the connotations and characteristics of tourism industrial eco-network,it has expatiated on the connotations of and approaches to enterprise coupling in tourism industrial eco-network.As there are different understandings and definitions of these connotations,the following four aspects must be achieved in order to realize coupling in the real sense for the enterprises in the network.① Establish the idea of "the whole is larger than the sum of all the parts",and construct interests community of tourism industrial eco-network.② Construct cooperation mechanism of joint struggle to transfer the advantages of the single to the advantages of the whole.③ Create and maintain strong service culture.④ Avoid as many service blunders as possible and construct damage warning mechanism in industrial eco-network.With the construction of the game model of tourism enterprise coupling and corresponding analysis,the results indicate that the mode of loose cooperation between enterprises in the tourism industry could hardly reach any forceful binding agreements.Consequently it is hard to realize the coordinated effects brought about by the cooperative game of tourism enterprise coupling and these enterprises would often come to a "prisoner dilemma" because of present tiny benefits.In the end,it suggests that during the process of competition tourism enterprises should also strengthen mutual cooperation as relying upon the platform of industrial eco-network.展开更多
The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activa...The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.展开更多
All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks o...All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.展开更多
This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is trans...This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.展开更多
Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we st...Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we study the stability of the synchronous state in coupled phase oscillators. It is found that numerical integration of differential equations of coupled phase oscillators with a finite time step may induce desynchronization at strong couplings. The mechanism behind this instability is that numerical accumulated errors in simulations may trigger the loss of stability of the synchronous state.Desynchronization critical couplings are found to increase and diverge as a power law with decreasing the integral time step. Theoretical analysis supports the local stability of the synchronized state. Globally the emergence of synchronous state depends on the initial conditions. Other metastable ordered states such as twisted states can coexist with the synchronous mode. These twisted states keep locally stable on a sparse network but lose their stability when the network becomes dense.展开更多
The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes(input nodes) receive a weak input signal and send it unidirectionally to the third node(output node)....The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes(input nodes) receive a weak input signal and send it unidirectionally to the third node(output node). Here, we change the motif's unidirectional couplings(feedforward) to bidirectional couplings(feedforward and feedback working together).We find that a small asymmetric coupling, in which the feedforward effect is stronger than the feedback effect, may enable the three-node motif to go through two distinct dynamic transitions, giving rise to a double resonant signal response. We present an analytical description of the double resonance, which agrees with the numerical findings.展开更多
Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analy...Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analyzed by using these models.The results show that: (1) Dependency network does play a key role in software architecture;(2) The exponents of in-degree and total-degree distribution functions of different networks differ slightly,while the exponent of out-degree varies obviously;(3) Weak-coupling relationships have greater impact on software architecture than strong-coupling relationships.Finally,a theoretically analysis on these statistical phenomena is proposed from the perspectives of software develop technology,develop process and developer’s habits,respectively.展开更多
Recently,multipath transmission control protocol(MPTCP)was standardized so that data can be transmitted through multiple paths to utilize all available path bandwidths.However,when high-speed long-distance networks ar...Recently,multipath transmission control protocol(MPTCP)was standardized so that data can be transmitted through multiple paths to utilize all available path bandwidths.However,when high-speed long-distance networks are included in MPTCP paths,the traffic transmission performance of MPTCP is severely deteriorated,especially in case the multiple paths’characteristics are heavily asymmetric.In order to alleviate this problem,we propose a“Coupled CUBIC congestion control”that adopts TCP CUBIC on a large bandwidth-delay product(BDP)path in a linked increase manner for maintaining fairness with an ordinary TCP traversing the same bottleneck path.To verify the performance excellence of the proposed algorithm,we implemented the Coupled CUBIC Congestion Control into Linux kernels by modifying the legacy MPTCP linked-increases algorithm(LIA)congestion control source code.We constructed asymmetric heterogeneous network testbeds mixed with large and small BDP paths and compared the performances of LIA and Coupled CUBIC by experiments.Experimental results show that the proposed Coupled CUBIC utilizes almost over 80%of the bandwidth resource in the high BDP path,while the LIA utilizes only less than 20%of the bandwidth for the same path.It was confirmed that the resource utilization and traffic transmission performance have been greatly improved by using the proposed Coupled CUBIC in high-speed multipath networks,as well as maintaining MPTCP fairness with competing single-path CUBIC or Reno TCP flows.展开更多
Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination betwe...Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination between coal mining and coalbed methane extraction.In this study,the concept of coal and coalbed methane coupling coordinated exploitation was proposed,and the corresponding evaluation model was established using the Bayesian principle.On this basis,the objective function of coal and coalbed methane coordinated exploitation deployment was established,and the optimal deployment was determined through a cuckoo search.The results show that clarifying the coupling coordinated level of coal and coalbed methane resource exploitation in coal mines is conducive to adjusting the deployment plan in advance.The case study results show that the evaluation and intelligent deployment method proposed in this paper can effectively evaluate the coupling coordinated level of coal and coalbed methane resource exploitation and intelligently optimize the deployment of coal mine operations.The optimization results demonstrate that the safe and efficient exploitation of coal and CBM resources is promoted,and coal mining and coalbed methane extraction processes show greater cooperation.The observations and findings of this study provide a critical reference for coal mine resource exploitation in the future.展开更多
Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often ...Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.展开更多
This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighte...This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.展开更多
Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particul...Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.展开更多
In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph ...In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph theory and dynamic system method. More precisely, the Hajnal diameter of matrix sequence plays a key role in in-vestigating synchronization dynamics and the joint graph across time periods possessing spanning tree is a doorsill for time-varying topologies to reach synchronization. These techniques with proper modification count for diverse models of networks of the cou-pled systems, including discrete-time and continuous-time models, linear and nonlinear models, deterministic and stochastic time-variations. Alternatively, transverse stability analysis of general time-varying dynamic systems can be employed for synchronization study as a special case and proved to be equivalent to Hajnal diameter.展开更多
基金supported by the National Natural Science Foundation of China(Nos.12072105 and 11932006)。
文摘Recently,numerous studies have demonstrated that the physics-informed neural network(PINN)can effectively and accurately resolve hyperelastic finite deformation problems.In this paper,a PINN framework for tackling hyperelastic-magnetic coupling problems is proposed.Since the solution space consists of two-phase domains,two separate networks are constructed to independently predict the solution for each phase region.In addition,a conscious point allocation strategy is incorporated to enhance the prediction precision of the PINN in regions characterized by sharp gradients.With the developed framework,the magnetic fields and deformation fields of magnetorheological elastomers(MREs)are solved under the control of hyperelastic-magnetic coupling equations.Illustrative examples are provided and contrasted with the reference results to validate the predictive accuracy of the proposed framework.Moreover,the advantages of the proposed framework in solving hyperelastic-magnetic coupling problems are validated,particularly in handling small data sets,as well as its ability in swiftly and precisely forecasting magnetostrictive motion.
基金supported in part by the National Natural Science Foundation of China (Grant Nos. 62171312 and 61771330)the Tianjin Municipal Education Commission Scientific Research Project (Grant No. 2020KJ114)。
文摘Coexistence of fast and slow traveling waves without synaptic transmission has been found in hhhippocampal tissues,which is closely related to both normal brain activity and abnormal neural activity such as epileptic discharge. However, the propagation mechanism behind this coexistence phenomenon remains unclear. In this paper, a three-dimensional electric field coupled hippocampal neural network is established to investigate generation of coexisting spontaneous fast and slow traveling waves. This model captures two types of dendritic traveling waves propagating in both transverse and longitude directions: the N-methyl-D-aspartate(NMDA)-dependent wave with a speed of about 0.1 m/s and the Ca-dependent wave with a speed of about 0.009 m/s. These traveling waves are synaptic-independent and could be conducted only by the electric fields generated by neighboring neurons, which are basically consistent with the in vitro data measured experiments. It is also found that the slow Ca wave could trigger generation of fast NMDA waves in the propagation path of slow waves whereas fast NMDA waves cannot affect the propagation of slow Ca waves. These results suggest that dendritic Ca waves could acted as the source of the coexistence fast and slow waves. Furthermore, we also confirm the impact of cellular spacing heterogeneity on the onset of coexisting fast and slow waves. The local region with decreasing distances among neighbor neurons is more liable to promote the onset of spontaneous slow waves which, as sources, excite propagation of fast waves. These modeling studies provide possible biophysical mechanisms underlying the neural dynamics of spontaneous traveling waves in brain tissues.
基金supported in part by the National Key Research and Development Program of China(Grant No.2019YFA0706200).
文摘In recent years,the Internet of Things(IoT)has gradually developed applications such as collecting sensory data and building intelligent services,which has led to an explosion in mobile data traffic.Meanwhile,with the rapid development of artificial intelligence,semantic communication has attracted great attention as a new communication paradigm.However,for IoT devices,however,processing image information efficiently in real time is an essential task for the rapid transmission of semantic information.With the increase of model parameters in deep learning methods,the model inference time in sensor devices continues to increase.In contrast,the Pulse Coupled Neural Network(PCNN)has fewer parameters,making it more suitable for processing real-time scene tasks such as image segmentation,which lays the foundation for real-time,effective,and accurate image transmission.However,the parameters of PCNN are determined by trial and error,which limits its application.To overcome this limitation,an Improved Pulse Coupled Neural Networks(IPCNN)model is proposed in this work.The IPCNN constructs the connection between the static properties of the input image and the dynamic properties of the neurons,and all its parameters are set adaptively,which avoids the inconvenience of manual setting in traditional methods and improves the adaptability of parameters to different types of images.Experimental segmentation results demonstrate the validity and efficiency of the proposed self-adaptive parameter setting method of IPCNN on the gray images and natural images from the Matlab and Berkeley Segmentation Datasets.The IPCNN method achieves a better segmentation result without training,providing a new solution for the real-time transmission of image semantic information.
文摘This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.
基金supported by the Anhui Provincial Development and Reform Commission New Energy Vehicles and Intelligent Connected Automobile Industry Technology Innovation Project。
文摘We investigate the quasi-synchronization of fractional-order complex networks(FCNs) with random coupling via quantized control. Firstly, based on the logarithmic quantizer theory and the Lyapunov stability theory, a new quantized feedback controller, which can make all nodes of complex networks quasi-synchronization and eliminate the disturbance of random coupling in the system state, is designed under non-delay conditions. Secondly, we extend the theoretical results under non-delay conditions to time-varying delay conditions and design another form of quantization feedback controller to ensure that the network achieves quasi-synchronization. Furthermore, the error bound of quasi-synchronization is obtained.Finally, we verify the accuracy of our results using two numerical simulation examples.
基金the National Natural Science Foundation of China(Grant No.62071248)。
文摘Information diffusion in complex networks has become quite an active research topic.As an important part of this field,intervention against information diffusion processes is attracting ever-increasing attention from network and control engineers.In particular,it is urgent to design intervention schemes for the coevolutionary dynamics between information diffusion processes and coupled networks.For this purpose,we comprehensively study the problem of information diffusion intervention over static and temporal coupling networks.First,individual interactions are described by a modified activitydriven network(ADN)model.Then,we establish a novel node-based susceptible-infected-recovered-susceptible(SIRS)model to characterize the information diffusion dynamics.On these bases,three synergetic intervention strategies are formulated.Second,we derive the critical threshold of the controlled-SIRS system via stability analysis.Accordingly,we exploit a spectral optimization scheme to minimize the outbreak risk or the required budget.Third,we develop an optimal control scheme of dynamically allocating resources to minimize both system loss and intervention expense,in which the optimal intervention inputs are obtained through optimal control theory and a forward-backward sweep algorithm.Finally,extensive simulation results validate the accuracy of theoretical derivation and the performance of our proposed intervention schemes.
基金The National Natural Science Foundation of China (No.60764001, 60835001,60875035, 61004032)the Postdoctoral Key Research Fund of Southeast Universitythe Natural Science Foundation of Jiangsu Province(No.BK2008294)
文摘In order to investigate the influence of hybrid coupling on the synchronization of delayed neural networks, by choosing an improved delay-dependent Lyapunov-Krasovskii functional, one less conservative asymptotical criterion based on linear matrix inequality (LMI) is established. The Kronecker product and convex combination techniques are employed. Also the bounds of time-varying delays and delay derivatives are fully considered. By adjusting the inner coupling matrix parameters and using the Matlab LMI toolbox, the design and applications of addressed coupled networks can be realized. Finally, the efficiency and applicability of the proposed results are illustrated by a numerical example with simulations.
基金Supported by Sichuan Circular Economy Research Centre of Sichuan Province Key Research Base of Philosophy and Social Science in2008(XHJJ-0808)~~
文摘Based on the introduction of the connotations and characteristics of tourism industrial eco-network,it has expatiated on the connotations of and approaches to enterprise coupling in tourism industrial eco-network.As there are different understandings and definitions of these connotations,the following four aspects must be achieved in order to realize coupling in the real sense for the enterprises in the network.① Establish the idea of "the whole is larger than the sum of all the parts",and construct interests community of tourism industrial eco-network.② Construct cooperation mechanism of joint struggle to transfer the advantages of the single to the advantages of the whole.③ Create and maintain strong service culture.④ Avoid as many service blunders as possible and construct damage warning mechanism in industrial eco-network.With the construction of the game model of tourism enterprise coupling and corresponding analysis,the results indicate that the mode of loose cooperation between enterprises in the tourism industry could hardly reach any forceful binding agreements.Consequently it is hard to realize the coordinated effects brought about by the cooperative game of tourism enterprise coupling and these enterprises would often come to a "prisoner dilemma" because of present tiny benefits.In the end,it suggests that during the process of competition tourism enterprises should also strengthen mutual cooperation as relying upon the platform of industrial eco-network.
基金This work was financially supported by the Key Project for National Science of "9.5" (Reward Ⅱ for National Science and Technol
文摘The nonlinear dynamical behaviors of artificial neural network (ANN) and their application to science and engineering were summarized. The mechanism of two kinds of dynamical processes, i.e. weight dynamics and activation dynamics in neural networks, and the stability of computing in structural analysis and design were stated briefly. It was successfully applied to nonlinear neural network to evaluate the stability of underground stope structure in a gold mine. With the application of BP network, it is proven that the neuro-com- puting is a practical and advanced tool for solving large-scale underground rock engineering problems.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174034,11135001,11205041,and 11305112)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130282)
文摘All dynamic complex networks have two important aspects, pattern dynamics and network topology. Discovering different types of pattern dynamics and exploring how these dynamics depend or/network topologies are tasks of both great theoretical importance and broad practical significance. In this paper we study the oscillatory behaviors of excitable complex networks (ECNs) and find some interesting dynamic behaviors of ECNs in oscillatory probability, the multiplicity of oscillatory attractors, period distribution, and different types of oscillatory patterns (e.g., periodic, quasiperiodic, and chaotic). In these aspects, we further explore strikingly sharp differences among network dynamics induced by different topologies (random or scale-free topologies) and different interaction structures (symmetric or asymmetric couplings). The mechanisms behind these differences are explained physically.
基金the National Natural Science Foundation of China (No.60874024, 60574013).
文摘This paper studies local exponential synchronization of complex delayed networks with switching topology via switched system stability theory. First, by a common unitary matrix, the problem of synchronization is transformed into the stability analysis of some linear switched delay systems. Then, when all subnetworks are synchronizable, a delay-dependent sufficient condition is given in terms of linear matrix inequalities (LMIs) which guarantees the solvability of the synchronization problem under an average dwell time scheme. We extend this result to the case that not all subnetworks are synchronizable. It is shown that in addition to average dwell time, if the ratio of the total activation time of synchronizable and non-synchronizable subnetworks satisfy an extra condition, then the problem is also solvable. Two numerical examples of delayed dynamical networks with switching topology are given, which demonstrate the effectiveness of obtained results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11875135)。
文摘Coupled phase oscillators usually achieve synchronization as the coupling strength among oscillators is increased beyond a critical value. The stability of synchronous state remains an open issue. In this paper, we study the stability of the synchronous state in coupled phase oscillators. It is found that numerical integration of differential equations of coupled phase oscillators with a finite time step may induce desynchronization at strong couplings. The mechanism behind this instability is that numerical accumulated errors in simulations may trigger the loss of stability of the synchronous state.Desynchronization critical couplings are found to increase and diverge as a power law with decreasing the integral time step. Theoretical analysis supports the local stability of the synchronized state. Globally the emergence of synchronous state depends on the initial conditions. Other metastable ordered states such as twisted states can coexist with the synchronous mode. These twisted states keep locally stable on a sparse network but lose their stability when the network becomes dense.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12175087 and 12105117)。
文摘The three-node feedforward motif has been revealed to function as a weak signal amplifier. In this motif, two nodes(input nodes) receive a weak input signal and send it unidirectionally to the third node(output node). Here, we change the motif's unidirectional couplings(feedforward) to bidirectional couplings(feedforward and feedback working together).We find that a small asymmetric coupling, in which the feedforward effect is stronger than the feedback effect, may enable the three-node motif to go through two distinct dynamic transitions, giving rise to a double resonant signal response. We present an analytical description of the double resonance, which agrees with the numerical findings.
基金The paper is supported by the National High Technology Research and Development Program of China (863 Program) (No.2009AA01Z439) and the National Natural Science Foundation of China (U0835001)
文摘Several software network models are constructed based on the relationships between classes in the object-oriented software systems.Then,a variety of well-known open source software applications are statistically analyzed by using these models.The results show that: (1) Dependency network does play a key role in software architecture;(2) The exponents of in-degree and total-degree distribution functions of different networks differ slightly,while the exponent of out-degree varies obviously;(3) Weak-coupling relationships have greater impact on software architecture than strong-coupling relationships.Finally,a theoretically analysis on these statistical phenomena is proposed from the perspectives of software develop technology,develop process and developer’s habits,respectively.
基金This result was supported by“Regional Innovation Strategy(RIS)”through the National Research Foundation of Korea(NRF)funded by Ministry of Education(MOE)(2021RIS-004).
文摘Recently,multipath transmission control protocol(MPTCP)was standardized so that data can be transmitted through multiple paths to utilize all available path bandwidths.However,when high-speed long-distance networks are included in MPTCP paths,the traffic transmission performance of MPTCP is severely deteriorated,especially in case the multiple paths’characteristics are heavily asymmetric.In order to alleviate this problem,we propose a“Coupled CUBIC congestion control”that adopts TCP CUBIC on a large bandwidth-delay product(BDP)path in a linked increase manner for maintaining fairness with an ordinary TCP traversing the same bottleneck path.To verify the performance excellence of the proposed algorithm,we implemented the Coupled CUBIC Congestion Control into Linux kernels by modifying the legacy MPTCP linked-increases algorithm(LIA)congestion control source code.We constructed asymmetric heterogeneous network testbeds mixed with large and small BDP paths and compared the performances of LIA and Coupled CUBIC by experiments.Experimental results show that the proposed Coupled CUBIC utilizes almost over 80%of the bandwidth resource in the high BDP path,while the LIA utilizes only less than 20%of the bandwidth for the same path.It was confirmed that the resource utilization and traffic transmission performance have been greatly improved by using the proposed Coupled CUBIC in high-speed multipath networks,as well as maintaining MPTCP fairness with competing single-path CUBIC or Reno TCP flows.
基金supported by the Natural Science Foundation of Chongqing,China(No.cstc2020jcyj-msxmX0836)the Fundamental Research Funds for the Central Universities(No.2020CDJ-LHZZ-002)the National Natural Science Foundation of China(No.52074041).
文摘Coal and coalbed methane(CBM)coordinated exploitation is a key technology for the safe exploitation of both resources.However,existing studies lack the quantification and evaluation of the degree of coordination between coal mining and coalbed methane extraction.In this study,the concept of coal and coalbed methane coupling coordinated exploitation was proposed,and the corresponding evaluation model was established using the Bayesian principle.On this basis,the objective function of coal and coalbed methane coordinated exploitation deployment was established,and the optimal deployment was determined through a cuckoo search.The results show that clarifying the coupling coordinated level of coal and coalbed methane resource exploitation in coal mines is conducive to adjusting the deployment plan in advance.The case study results show that the evaluation and intelligent deployment method proposed in this paper can effectively evaluate the coupling coordinated level of coal and coalbed methane resource exploitation and intelligently optimize the deployment of coal mine operations.The optimization results demonstrate that the safe and efficient exploitation of coal and CBM resources is promoted,and coal mining and coalbed methane extraction processes show greater cooperation.The observations and findings of this study provide a critical reference for coal mine resource exploitation in the future.
基金supported by National Natural Science Foundation of China under Nos. 10702023 and 10832006China Post-doctoral Special Science Foundation No. 200801020+1 种基金the Natural Science Foundation of Inner Mongolia Autonomous Region under Grant No. 2007110020110supported in part by the Project of Knowledge Innovation Program (PKIP) of Chinese Academy of Sciences
文摘Realistic networks display not only a complex topological structure, but also a heterogeneous distribution of weights in connection strengths. In addition, the information spreading through a complex network is often associated with time delays due to the finite speed of signal transmission over a distance. Hence, the weighted complex network with coupling delays have meaningful implications in real world, and resultantly gains increasing attention in various fields of science and engineering. Based on the theory of asymptotic stability of linear time-delay systems, synchronization stability of the weighted complex dynamical network with coupling delays is investigated, and simple criteria are obtained for both delay-independent and delay-dependent stabilities of synchronization states. The obtained criteria in this paper encompass the established results in the literature as special cases. Some examples are given to illustrate the theoretical results.
基金supported by the National Natural Science Foundation of China (U1808205)Hebei Natural Science Foundation (F2000501005)。
文摘This paper studies the target controllability of multilayer complex networked systems,in which the nodes are highdimensional linear time invariant(LTI)dynamical systems,and the network topology is directed and weighted.The influence of inter-layer couplings on the target controllability of multi-layer networks is discussed.It is found that even if there exists a layer which is not target controllable,the entire multi-layer network can still be target controllable due to the inter-layer couplings.For the multi-layer networks with general structure,a necessary and sufficient condition for target controllability is given by establishing the relationship between uncontrollable subspace and output matrix.By the derived condition,it can be found that the system may be target controllable even if it is not state controllable.On this basis,two corollaries are derived,which clarify the relationship between target controllability,state controllability and output controllability.For the multi-layer networks where the inter-layer couplings are directed chains and directed stars,sufficient conditions for target controllability of networked systems are given,respectively.These conditions are easier to verify than the classic criterion.
基金Supported by National Natural Science Foundation of China (Grant No.U21A20122)Zhejiang Provincial Natural Science Foundation of China (Grant No.LY22E050012)+2 种基金China Postdoctoral Science Foundation (Grant Nos.2023T160580,2023M743102)Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems of China (Grant No.GZKF-202225)Students in Zhejiang Province Science and Technology Innovation Plan of China (Grant No.2023R403073)。
文摘Fine particulate matter produced during the rapid industrialization over the past decades can cause significant harm to human health.Twin-fluid atomization technology is an effective means of controlling fine particulate matter pollution.In this paper,the influences of the main parameters on the droplet size,effective atomization range and sound pressure level(SPL)of a twin-fluid nozzle(TFN)are investigated,and in order to improve the atomization performance,a multi-objective synergetic optimization algorithm is presented.A multi-physics coupled acousticmechanics model based on the discrete phase model(DPM),large eddy simulation(LES)model,and Ffowcs Williams-Hawkings(FW-H)model is established,and the numerical simulation results of the multi-physics coupled acoustic-mechanics method are verified via experimental comparison.Based on the analysis of the multi-physics coupled acoustic-mechanics numerical simulation results,the effects of the water flow on the characteristics of the atomization flow distribution were obtained.A multi-physics coupled acoustic-mechanics numerical simulation result was employed to establish an orthogonal test database,and a multi-objective synergetic optimization algorithm was adopted to optimize the key parameters of the TFN.The optimal parameters are as follows:A gas flow of 0.94 m^(3)/h,water flow of 0.0237 m^(3)/h,orifice diameter of the self-excited vibrating cavity(SVC)of 1.19 mm,SVC orifice depth of 0.53 mm,distance between SVC and the outlet of nozzle of 5.11 mm,and a nozzle outlet diameter of 3.15 mm.The droplet particle size in the atomization flow field was significantly reduced,the spray distance improved by 71.56%,and the SPL data at each corresponding measurement point decreased by an average of 38.96%.The conclusions of this study offer a references for future TFN research.
基金Supported by the National Natural Science Foundation of China(61273211,60974015,61273309)the Foundation for the Author of National Excellent Doctoral Dissertation of China(200921)+1 种基金the Shanghai Rising-Star Program(11QA1400400)the Marie Curie International Incoming Fellowship from the European Commission(FP7-PEOPLE-2011-IIF-302421)
文摘In this paper, we present a review of our recent works on complete synchro-nization analyses of networks of the coupled dynamical systems with time-varying cou-plings. The main approach is composed of algebraic graph theory and dynamic system method. More precisely, the Hajnal diameter of matrix sequence plays a key role in in-vestigating synchronization dynamics and the joint graph across time periods possessing spanning tree is a doorsill for time-varying topologies to reach synchronization. These techniques with proper modification count for diverse models of networks of the cou-pled systems, including discrete-time and continuous-time models, linear and nonlinear models, deterministic and stochastic time-variations. Alternatively, transverse stability analysis of general time-varying dynamic systems can be employed for synchronization study as a special case and proved to be equivalent to Hajnal diameter.