N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices di...N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices did exhibit electrical bistability and negative differential resistance(NDR) effects. A large ON/OFF current ratio of 104 at negative voltages was obtained by applying different amplitudes of sweeping voltage. The observed conductance switching and the negative differential resistance are attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer,and the charge trapping/detrapping in the nanocrystals.展开更多
We experimentally demonstrate an In P-based hybrid integration of a single-mode DFB laser emitting at around 1310 nm and a tunneling diode. The evident negative differential resistance regions are obtained in both ele...We experimentally demonstrate an In P-based hybrid integration of a single-mode DFB laser emitting at around 1310 nm and a tunneling diode. The evident negative differential resistance regions are obtained in both electrical and optical output characteristics. The electrical and optical bistabilities controlled by the voltage through the tunneling diode are also measured. When the voltage changes between 1.46 V and 1.66 V, a 200-mV-wide hysteresis loop and an optical power ON/OFF ratio of 17 dB are obtained. A side-mode suppression ratio of the integrated device in the ON state is up to 43 dB. The tunneling diode can switch on/off the laser within a very small voltage range compared with that directly controlled by a voltage source.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61377028)the Natural Science Funds for Distinguished Young Scholar,China(Grant No.61125505)the Fundamental Research Funds for the Central Universities,China(Grant No.2014JBZ009)
文摘N-dodecanethiol capped zinc sulfide(Zn S) nanocrystals were synthesized by the one-pot approach and blended with poly(N-vinylcarbazole)(PVK) to fabricate electrical bistable devices. The corresponding devices did exhibit electrical bistability and negative differential resistance(NDR) effects. A large ON/OFF current ratio of 104 at negative voltages was obtained by applying different amplitudes of sweeping voltage. The observed conductance switching and the negative differential resistance are attributed to the electric-field-induced charge transfer between the nanocrystals and the polymer,and the charge trapping/detrapping in the nanocrystals.
基金Supported by the National Key Research and Development Program of China under Grant No 2017YFB0405301the National Natural Science Foundation of China under Grant Nos 61604144 and 61504137
文摘We experimentally demonstrate an In P-based hybrid integration of a single-mode DFB laser emitting at around 1310 nm and a tunneling diode. The evident negative differential resistance regions are obtained in both electrical and optical output characteristics. The electrical and optical bistabilities controlled by the voltage through the tunneling diode are also measured. When the voltage changes between 1.46 V and 1.66 V, a 200-mV-wide hysteresis loop and an optical power ON/OFF ratio of 17 dB are obtained. A side-mode suppression ratio of the integrated device in the ON state is up to 43 dB. The tunneling diode can switch on/off the laser within a very small voltage range compared with that directly controlled by a voltage source.