Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications...Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.展开更多
The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0....The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0.93 eV(C-V) and 0.87 eV(I-V)/1.03 eV(C-V). However, the BH rises to 0.99 eV(I-V)/1.18 eV(C-V)and then slightly deceases to 0.92 eV(I-V)/1.03 eV(C-V) after annealing at 300 ℃ and 400 ℃. The utmost BH is attained after annealing at 300 ℃ and thus the optimum annealing for SBD is 300 ℃. By applying Cheung's functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung's and ΨS-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 ℃ annealing and then slightly increases after annealing at 400 ℃. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.展开更多
基金This work was financially supported by the National Natural Science Foundation of China(52101064)Jiangsu Planned Projects for Postdoctoral Research Funds(2020Z158)Industry-University-Research Cooperation Projects(RH2000002728,RH2000002332,RH2100000263).
文摘Due to their outstanding electrical contact properties,Cd-containing silver-matrix electrical contact materials can meet the requirements of high stability and long life for military defense and aerospace applications.In order to further reduce the Cd content under the premise of meeting the high-performance requirements,in this study,high-purity intermediate Ti_(2)Cd powder of MAX phase(Ti_(2)CdC)was synthesized with a pressureless technique and then applied to reinforce the Ag matrix.The Cd content of the as-prepared Ag/Ti_(2)Cd composites was actually reduced by 38.31%compared with conventional Ag/CdO material.Based on the systematic study of the effect of heat treatment temperature on the physical phase,morphology,interface and comprehensive physical properties of Ag/Ti_(2)Cd composites,the preferred samples(heat treated at 400°C for 1 h)showed high density(97.77%),low resistivity(2.34μΩ·cm),moderate hardness(90.8HV),high tensile strength(189.9 MPa),and exhibited good electrical contact performance after 40000 cycles of arc discharging under severe conditions(DC 28 V/20 A).The results of microscopic morphological evolution,phase change and elemental distribution of the electrical contact surface show that the combination of high stability of Ti_(2)Cd reinforcing phase,good interfacial bonding with Ag matrix and improved melt pool viscosity in the primary stage of arc erosion,results in low and stable contact resistance(average value 13.20 mΩ)and welding force(average value 0.6 N),low fluctuation of static force(2.2-2.5 N).The decomposition and absorption energy of Ti_(2)Cd and the arc extinguishing effect of Cd vapor are the main reasons for the stable arcing energy and arcing time of electric contacts in the late stage of arc erosion.
文摘The electrical and current transport properties of rapidly annealed Dy/p-GaN SBD are probed by I-V and C-V techniques. The estimated barrier heights(BH) of as-deposited and 200 ℃ annealed SBDs are 0.80 eV(I-V)/0.93 eV(C-V) and 0.87 eV(I-V)/1.03 eV(C-V). However, the BH rises to 0.99 eV(I-V)/1.18 eV(C-V)and then slightly deceases to 0.92 eV(I-V)/1.03 eV(C-V) after annealing at 300 ℃ and 400 ℃. The utmost BH is attained after annealing at 300 ℃ and thus the optimum annealing for SBD is 300 ℃. By applying Cheung's functions, the series resistance of the SBD is estimated. The BHs estimated by I-V, Cheung's and ΨS-V plot are closely matched; hence the techniques used here are consistency and validity. The interface state density of the as-deposited and annealed contacts are calculated and we found that the NSS decreases up to 300 ℃ annealing and then slightly increases after annealing at 400 ℃. Analysis indicates that ohmic and space charge limited conduction mechanisms are found at low and higher voltages in forward-bias irrespective of annealing temperatures. Our experimental results demonstrate that the Poole-Frenkel emission is leading under the reverse bias of Dy/p-GaN SBD at all annealing temperatures.