期刊文献+
共找到1,688篇文章
< 1 2 85 >
每页显示 20 50 100
Empirical formulae for electric double-layer repulsion between two arbitrarily inclined clay particles 被引量:3
1
作者 Xiangyu Shang Juming Lu +2 位作者 Lianfei Kuang Chen Yang Guoqing Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第6期1183-1189,共7页
To understand the mesoscopic mechanism of clayey soil in view of macroscopic behavior, it is essential to quantitatively calculate the electric double-layer repulsion between arbitrarily inclined clay particles.Howeve... To understand the mesoscopic mechanism of clayey soil in view of macroscopic behavior, it is essential to quantitatively calculate the electric double-layer repulsion between arbitrarily inclined clay particles.However, suitable calculation methods with high efficiency and accuracy are still rare at present in literature. Based on a great number of numerical calculations of the repulsion between two inclined platy clay particles, explicit empirical formulae for estimating electric double-layer repulsion between clay particles are put forward. Comparison between the empirical solutions and corresponding numerical results shows that the proposed formulae have a reasonable accuracy, and application of the presented formula is easy and efficient. 展开更多
关键词 Clay particles electric double-layer repulsion Numerical analysis Empirical formula
下载PDF
Adsorption of K^+ from an aqueous phase onto an activated carbon used as an electric double-layer capacitor electrode 被引量:3
2
作者 LI Ying XIE Qiang +2 位作者 YAN Wen WANG Yan ZHANG Zhonghua 《Mining Science and Technology》 EI CAS 2010年第4期551-556,共6页
The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore struc... The adsorption capacity and absorption rate for electrolyte onto activated carbon are important parameters used to characterize activated carbon electric double-layer capacitor electrodes. In this paper the pore structure of typical commercial activated carbons, and various Mn-doped activated carbons prepared on a laboratory scale, are described. The pore structure was character-ized by N2 adsorption/desorption isotherms. Isotherms for K+ adsorption onto these activated carbons from the aqueous phase were also obtained. The experimental, equilibrium K+ adsorption data were fitted to the Langmuir, Freundlich or Temkin equations. Adsorption of K+ onto the activated carbons was measured and plotted as a function of time. The adsorption kinetic data were modeled by either pseudo-first or pseudo-second order equations. The Elvoich equation, a liquid film diffusion and an intra-particle diffusion model were used to fit the kinetic data. The results indicate that the adsorption of K+ onto activated carbon is influenced by many factors including pore size distribution, specific surface area and the surface chemistry of the activated carbons. The Temkin equation best describes the equilibrium adsorption data. The pseudo-second order model exactly describes the whole adsorption process, which is controlled by both liquid film and intra-particle diffusion. 展开更多
关键词 activated carbon adsorption isotherm adsorption kinetics electric double-layer capacitor
下载PDF
Porous monoliths of 3D graphene for electric double-layer supercapacitors 被引量:3
3
作者 Jinjue Zeng Chenyang Xu +2 位作者 Tian Gao Xiangfen Jiang Xue‐Bin Wang 《Carbon Energy》 CAS 2021年第2期193-224,共32页
For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectu... For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectures,3D networks,or aerogels.The intersupported structure of porous monolithic 3D graphene(3DG)can prevent aggregation or restacking of graphene individuals,and the interconnected sp^(2) network of 3DG not only can provide the highway for the transport of electron/phonon but also can present continual cavities/channels for mass transfer.This review summarizes the synthesis methodology of 3DG porous monoliths and highlights the application for electric double-layer capacitors.Present challenges and future prospects about the manufacture and application of 3DG are also discussed. 展开更多
关键词 3D graphene electric double-layer capacitor graphene aerogel porous monolith supercapacitor
下载PDF
Inter-stage performance and energy characteristics analysis of electric submersible pump based on entropy production theory
4
作者 Hui Wang Yang Yang +5 位作者 Bin Xi Wei-Dong Shi Chuan Wang Lei-Lei Ji Xiang-Yu Song Zhao-Ming He 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1354-1368,共15页
The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi... The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance. 展开更多
关键词 electric submersible pump(ESP) Entropy production theory Energy characteristics Inter-stage differences
下载PDF
Development of mean-field electrical double layer theory 被引量:1
5
作者 黄一珂 刘晓红 +1 位作者 李姝 言天英 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第1期282-288,共7页
In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the developme... In order to understand the electric interfacial behavior, mean field based electric double layer (EDL) theory has been continuously developed over the past 150 years. In this article, we briefly review the development of the EDL model, from the dimensionless Gouy-Chapman model to the symmetric Bikerman-Freise model, and finally toward size-asymmetric mean field theory models. We provide the general derivations within the framework of Helmholtz free energy of the lattice- gas model, and it can be seen that the above-mentioned models are consistent in the sense that the interconversi0n among them can be achieved by reducing the basic assumptions. 展开更多
关键词 electric double layer mean field theory differential capacitance SUPERCAPACITOR
下载PDF
Carbon aerogels for electric double-layer capacitors 被引量:1
6
作者 ZHANG Lin LIU Hongbo WANG Ming LIU Wei 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期51-57,共7页
In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional ... In this study, carbon aerogels were derived via the pyrolysis of resorcinol-formaldehyde (RF) aerogels, which were cost-effectively manufactured from RF wet gels by an ambient drying technique instead of conventional supercritical drying. By varying the R/C ratio (molar ratio of resorcinol to catalyst), mesoporous carbon aerogels with high specific surface area were prepared successfully and further investigated as electrode materials for electric double-layer capacitors (EDLCs). The textural properties of carbon aerogels obtained were characterized by nitrogen adsorption/desorption analysis and SEM. The electrochemical performances of carbon aerogels were investigated by impedance spectroscopy, galvanostatic charge/discharge and cyclic voltammetry methods. The results show that BET surface area and specific capacitance increase with R/C ratio, the maximum values of 727 m2·g-1 and 132 F·g-1 are achieved at R/C ratio will of 300. Increasing R/C ratio increase the average pore size of carbon aerogel electrode, which has improved the rate capability. Furthermore, EDLC with carbon aerogel electrodes has an excellent stability at large discharge current and long cycle life. 展开更多
关键词 carbon aerogel electric double-layer capacitors TEXTURE electrochemical performance
下载PDF
Preparation of spiro-type quaternary ammonium salt via economical and efficient synthetic route as electrolyte for electric double-layer capacitor 被引量:4
7
作者 周宏明 孙文佼 李荐 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2435-2439,共5页
A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-di... A spiro-type quaternary ammonium salt, spiro-(1,1′)-bipyrrolidinium tetrafluoroborate(SBP-BF4) was successfully prepared by an economical and efficient three-step process comprising the cyclization reaction of 1,4-dibromobutane and pyrrolidine, and subsequent ion exchange pathway with KOH followed by neutralization reaction via HBF4 in the system of ethanol solution. 1H NMR, 13 C NMR, FI-IR and XPS analyses showed the structure of SBP-BF4. The as-obtained SBP-BF4 was dissolved in AN and used as the electrolyte for supercapacitor. Electrochemical measurements demonstrate that, compared with commercial electrolyte TEMA-BF4/AN, SBP-BF4/AN exhibits high ionic conductivity, lower resistance and improved cycling performance, which is due to its smaller ion size and stable symmetry structure. 展开更多
关键词 spiro-type quaternary ammonium salt synthesis electrolyte electric double-layer capacitor
下载PDF
Tuning the phase separation in La_(0.325)Pr_(0.3)Ca_(0.375)MnO_3 using the electric double-layer field effect
8
作者 崔丽敏 李洁 +5 位作者 张玉 赵璐 邓辉 黄克强 李贺康 郑东宁 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第9期528-534,共7页
Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observ... Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field. 展开更多
关键词 electric double-layer field effect MANGANITES phase separation
下载PDF
Aplication of Corncob-Based Activated Carbon as Electrode Material for Electric Double-Layer Capacitors
9
作者 王玉新 刘炳泗 +1 位作者 时志强 刘凤丹 《Transactions of Tianjin University》 EI CAS 2012年第3期217-223,共7页
To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure prope... To investigate the influence of expansion pretreatment for materials on carbon structure, activated carbons (ACs) were prepared from corncob with/without expansion pretreatment by KOH activation, the structure properties of which were determined based on N2 adsorption isotherm at 77 K. The results show that the expansion pretreatment for corncobs is beneficial to the preparation of ACs with high surface area. The specific surface area of the AC derived from corncob with expansion pretreatment (AC-1) is 32.5% larger than that without expansion pretreatment (AC-2). Furthermore, to probe the potential application of corncob-based ACs in electric double-layer capacitor (EDLC), the prepared ACs were used as electrode materials to assemble EDLC, and its electrochemical performance was investi- gated. The results indicate that the specific capacitance of AC-I is 276 F/g at 50 mA/g, which increases by 27% com- pared with that of AC-2 (217 F/g). As electrode materials, AC-1 presents a better electrochemical performance than AC-2, including a higher voltage maintenance ratio and a lower leakage current. 展开更多
关键词 corncob-based activated carbon electrode material electric double-layer capacitor
下载PDF
Influence of polyethylene glycol on pore structure and electric double-layer capacitance of carbon xerogel
10
作者 侯朝辉 李新海 +2 位作者 何则强 刘恩辉 邓凌峰 《Journal of Central South University of Technology》 2004年第3期255-260,共6页
Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable p... Mesoporous polyethylene glycol-resorcinol and formaldehyde(PEG-RF) carbon xerogels were prepared by a new polymer blend method in which PEG-RF mixed organic xerogels were synthesized by blending thermally unstable polyethylene glycol with organic monomers, resorcinol and formaldehyde and then subjected to pyrolization at 1 000 ℃. The influences of mass ratio of PEG to the theoretical yield of RF xerogel, m(PEG)/m(RF) and the (relative) molecular mass of PEG on the pore structure and electric double layer capacitance(EDLC) performance of PEG-RF carbon xerogels were investigated. The results show that PEG under different conditions leads to the difference of phase separation structure of the polymer blend and thus the change of pore structure of PEG-RF carbon xerogels. Specific surface area and capacity of PEG-RF carbon xerogels in 30% H2SO4 solution can reach (755 m2/g) and 150 F/g, respectively. Their surface can be fully utilized to form electric double layer. However, the pore structure differences of PEG-RF carbon xerogels result in their different EDLC performances. The distributed capacitance effect increases with decreasing the pore size of PEG-RF carbon xerogels. 展开更多
关键词 polymer blend method polyethylene glycol carbon xerogel electric double-layer capacitance
下载PDF
Curvature effects on electric-double-layer capacitance
11
作者 Jie Yang Alejandro Gallegos +3 位作者 Cheng Lian Shengwei Deng Honglai Liu Jianzhong Wu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第3期145-152,共8页
Understanding the microscopic structure and thermodynamic properties of electrode/electrolyte interfaces is central to the rational design of electric-double-layer capacitors(EDLCs).Whereas practical applications ofte... Understanding the microscopic structure and thermodynamic properties of electrode/electrolyte interfaces is central to the rational design of electric-double-layer capacitors(EDLCs).Whereas practical applications often entail electrodes with complicated pore structures,theoretical studies are mostly restricted to EDLCs of simple geometry such as planar or slit pores ignoring the curvature effects of the electrode surface.Significant gaps exist regarding the EDLC performance and the interfacial structure.Herein the classical density functional theory(CDFT)is used to study the capacitance and interfacial behavior of spherical electric double layers within a coarse-grained model.The capacitive performance is associated with electrode curvature,surface potential,and electrolyte concentration and can be correlated with a regression-tree(RT)model.The combination of CDFT with machine-learning methods provides a promising quantitative framework useful for the computational screening of porous electrodes and novel electrolytes. 展开更多
关键词 electric double layer electrodes/electrolyte interface Curvature effects Classical density functional theory Machine learning
下载PDF
Applications of Data Mining Theory in Electrical Engineering
12
作者 Yagang ZHANG Jing MA +1 位作者 Jinfang ZHANG Zengping WANG 《Engineering(科研)》 2009年第3期211-215,共5页
In this paper, we adopt a novel applied approach to fault analysis based on data mining theory. In our researches, global information will be introduced into the electric power system, we are using mainly cluster anal... In this paper, we adopt a novel applied approach to fault analysis based on data mining theory. In our researches, global information will be introduced into the electric power system, we are using mainly cluster analysis technology of data mining theory to resolve quickly and exactly detection of fault components and fault sections, and finally accomplish fault analysis. The main technical contributions and innovations in this paper include, introducing global information into electrical engineering, developing a new application to fault analysis in electrical engineering. Data mining theory is defined as the process of automatically extracting valid, novel, potentially useful and ultimately comprehensive information from large databases. It has been widely utilized in both academic and applied scientific researches in which the data sets are generated by experiments. Data mining theory will contribute a lot in the study of electrical engineering. 展开更多
关键词 FAULT Analysis Data MINING theory CLASSIFICATION electrical ENGINEERING
下载PDF
Structural,Electrical,and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory
13
作者 陈永昌 霍苗 +5 位作者 刘洋 陈桐 冷成财 李强 孙兆林 宋丽娟 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第1期132-136,共5页
The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA-t-U scheme, respectively. Within the GGA4-U approach, the calculated intercalation voltage (ranges from 4,5 V to 4... The layered Li2MnO3 is investigated by using the first-principles calculations within the GGA and GGA-t-U scheme, respectively. Within the GGA4-U approach, the calculated intercalation voltage (ranges from 4,5 V to 4.9 V) is found to be in good agreement with experiments. From the analysis of electronic structure, the pure phase Li2MnO3 is insulating, which is indicative of poor electronic-conduction properties. However, further studies of lithium ion diffusion in bulk Li2MnO3 show that unlike the two-dimensional diffusion pathways in rock salt structure layered cathode materials, lithium can diffuse in a three-dimensional pathway in Li2MnO3, with moderate lithium migration energy barrier ranges from 0.57 to 0.63 e V. 展开更多
关键词 Li Structural electrical and Lithium Ion Dynamics of Li2MnO3 from Density Functional theory MNO
下载PDF
The Bipolar Field-Effect Transistor:V.Bipolar Electrochemical Current Theory(Two-MOS-Gates on Thin-Base)
14
作者 揭斌斌 薩支唐 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第4期620-627,共8页
This paper reports the intrinsic-structure DC characteristics computed from the analytical electrochemical current theory of the bipolar field-effect transistor (BiFET) with two identical MOS gates on nanometer-thic... This paper reports the intrinsic-structure DC characteristics computed from the analytical electrochemical current theory of the bipolar field-effect transistor (BiFET) with two identical MOS gates on nanometer-thick pure-base of silicon with no generation-recombination-trapping. Numerical solutions are rapidly obtained for the three potential variables,electrostatic and electron and hole electrochemical potentials,to give the electron and hole surface and volume channel currents,using our cross-link two-route or zig-zag one-route recursive iteration algorithms. Boundary conditions on the three potentials dominantly affect the intrinsic-structure DC characteristics,illustrated by examples covering 20-decades of current (10-22 to 10-2 A/Square at 400cm^2/(V · s) mobility for 1.5nm gate-oxide, and 30nm-thick pure-base). Aside from the domination of carrier space-charge-limited drift current in the strong surface channels,observed in the theory is also the classical drift current saturation due to physical pinch-off of an impure-base volume channel depicted by the 1952 Shockley junction-gate field-effect transistor theory,and its extension to complete cut-off of the pure-base volume channel,due to vanishing carrier screening by the few electron and hole carriers in the pure-base,with Debye length (25mm) much larger than device dimension (25nm). 展开更多
关键词 bipolar field-effect transistor theory recursive iteration electron and hole electrochemical potentials electric potential boundary conditions
下载PDF
Molecular Spectra and Dissociation Dynamics of Oxalyl Chloride: Effect of External Electrical Fields 被引量:2
15
作者 YIN Wen-Yi LIU Yu-Zhu +1 位作者 ZHOU Feng-Bin BUMALIYA Abulimiti 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2019年第4期499-508,共10页
Oxalyl chloride is a highly toxic and caustic substance, which widely exists in human production and life as a kind of volatile organic compound. Based on the density functional theory B3 LYP at 6-311++G(d, p) level, ... Oxalyl chloride is a highly toxic and caustic substance, which widely exists in human production and life as a kind of volatile organic compound. Based on the density functional theory B3 LYP at 6-311++G(d, p) level, the influences of external electric field on the bond length, bond energy, dipole moment and dissociation mechanism are optimized. The results indicate that the C_1–Cl_3 bond length increases while the C_4–Cl_6 bond decreases. At the same time, the carbon-carbon bond length gradually increases with the increase of electric field. The total energy decreases while the dipole moment gradually increases with the increase of electric field. In the infrared spectra, the vibration frequency of the carbon-chlorine(C_4–Cl_6) bond decreases while the vibration frequency of the carbon-oxygen bond increases. In the ultraviolet-visible spectra, the wavelength of the strongest absorption peak increases as the external electric field increases and shows an observable red shift phenomenon. Additionally, single point energies of oxalyl chloride along the carbon-carbon bond are scanned with the equation-of-motion coupled cluster method restricted to single and double excitations(EOM-CCSD) method and the potential energy curves under different external electric fields are obtained. The dissociation barrier in potential energy curve decreases because of the breakage of carbon-carbon bond with the increase of external electric field. These results provide reference for further researches on the properties of oxalyl chloride and offer a theoretical basis for the study of oxalyl chloride degradation. 展开更多
关键词 oxalyl CHLORIDE SPECTRA electric field DENSITY FUNCTIONAL theory DEGRADATION
下载PDF
Scale Effects and a Method for Similarity Evaluation in Micro Electrical Discharge Machining 被引量:1
16
作者 LIU Qingyu ZHANG Qinhe +3 位作者 WANG Kan ZHU Guang FU Xiuzhuo ZHANG Jianhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第6期1193-1199,共7页
Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at th... Electrical discharge machining(EDM) is a promising non-traditional micro machining technology that offers a vast array of applications in the manufacturing industry. However, scale effects occur when machining at the micro-scale, which can make it difficult to predict and optimize the machining performances of micro EDM. A new concept of "scale effects" in micro EDM is proposed, the scale effects can reveal the difference in machining performances between micro EDM and conventional macro EDM. Similarity theory is presented to evaluate the scale effects in micro EDM. Single factor experiments are conducted and the experimental results are analyzed by discussing the similarity difference and similarity precision. The results show that the output results of scale effects in micro EDM do not change linearly with discharge parameters. The values of similarity precision of machining time significantly increase when scaling-down the capacitance or open-circuit voltage. It is indicated that the lower the scale of the discharge parameter, the greater the deviation of non-geometrical similarity degree over geometrical similarity degree, which means that the micro EDM system with lower discharge energy experiences more scale effects. The largest similarity difference is 5.34 while the largest similarity precision can be as high as 114.03. It is suggested that the similarity precision is more effective in reflecting the scale effects and their fluctuation than similarity difference. Consequently, similarity theory is suitable for evaluating the scale effects in micro EDM. This proposed research offers engineering values for optimizing the machining parameters and improving the machining performances of micro EDM. 展开更多
关键词 electrical Discharge Machining (EDM) micro EDM Scale effect Similarity theory Similarity evaluating method
下载PDF
Study of the Electrical Double Layer of a Spherical Micelle: Functional Theoretical Approach 被引量:1
17
作者 Zheng Wu WANG Gan Zuo LI +2 位作者 Da Ren GUAN Xi Zhang YI An Jing LOU 《Chinese Chemical Letters》 SCIE CAS CSCD 2001年第7期645-646,共2页
By using the iterative method in functional theory, an analytic expression of the Poisson-Boltzmann equation (PB eq.), which describes the distribution of the potential of electrical double layer of a spherical micell... By using the iterative method in functional theory, an analytic expression of the Poisson-Boltzmann equation (PB eq.), which describes the distribution of the potential of electrical double layer of a spherical micelle, has been carried out under the general potential condition for the first time. The method also can give the radius, the surface potential, and the thickness of the layer. 展开更多
关键词 Functional analytic theory spherical micelle electrical double layer
下载PDF
Unraveling the effect of uniaxial strain on thermoelectric properties of Mg2Si:A density functional theory study 被引量:1
18
作者 Kulwinder Kaur Ranjan Kumar 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第6期301-306,共6页
In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found th... In this work, the effect of uniaxial strain on electronic and thermoelectric properties of magnesium silicide using density functional theory(DFT) and Boltzmann transport equations has been studied. We have found that the value of band gap increases with tensile strain and decreases with compressive strain. The variations of electrical conductivity,Seebeck coefficient, electronic thermal conductivity, and power factor with temperatures have been calculated. The Seebeck coefficient and power factor are observed to be modified strongly with strain. The value of power factor is found to be higher in comparison with the unstrained structure at 2% tensile strain. We have also calculated phonon dispersion, phonon density of states, specific heat at constant volume, and lattice thermal conductivity of material under uniaxial strain. The phonon properties and lattice thermal conductivity of Mg2Si under uniaxial strain have been explored first time in this report. 展开更多
关键词 SEMICONDUCTORS thermoelectric and thermo magnetic effects electric and thermal conductivity density functional theory
下载PDF
General Analytic Solution of the Telegrapher’s Equations and the Resulting Consequences for Electrically Short Transmission Lines 被引量:1
19
作者 Steffen Kü hn 《Journal of Electromagnetic Analysis and Applications》 2020年第6期71-87,共17页
Based on classical circuit theory, this article develops a general analytic solution of the telegrapher’s equations, in which the length of the cable is explicitly contained as a freely adjustable parameter. For this... Based on classical circuit theory, this article develops a general analytic solution of the telegrapher’s equations, in which the length of the cable is explicitly contained as a freely adjustable parameter. For this reason, the solution is also applicable to electrically short cables. Such a model has become indispensable because a few months ago, it was experimentally shown that voltage fluctuations in ordinary but electrically short copper lines move at signal velocities that are significantly higher than the speed of light in a vacuum. This finding contradicts the statements of the special theory of relativity but not, as is shown here, the fundamental principles of electrical engineering. Based on the general transfer function of a transmission line, the article shows mathematically that an unterminated, electrically short cable has the characteristics of an ideal delay element, meaning that an input signal appears at the output with a slight delay but remains otherwise unchanged. Even for conventional cables, the time constants can be so small that the corresponding signal velocities can significantly exceed the speed of light in a vacuum. The article also analyses the technical means with which this effect can be conveyed to very long cables. 展开更多
关键词 Telegrapher’s Equations Transmission Line theory Special theory of Relativity electrically Short Transmission Lines FTL Communication
下载PDF
Form Invariant Sommerfeld Electrical Conductivity in Generalised d Dimensions 被引量:1
20
作者 Muktish Acharyya 《Communications in Theoretical Physics》 SCIE CAS CSCD 2011年第11期943-944,共2页
The Sommerfeld electrical conductivity is calculated in d dimensions following Boltzmann kinetic approach.At T = 0,the mathematical form of the electrical conductivity is found to remain invariant in any generalised s... The Sommerfeld electrical conductivity is calculated in d dimensions following Boltzmann kinetic approach.At T = 0,the mathematical form of the electrical conductivity is found to remain invariant in any generalised spatial(d)dimensions. 展开更多
关键词 Sommerfeld electrical conductivity Boltzmann transport theory electronic density of states Fermi Dirac distribution
下载PDF
上一页 1 2 85 下一页 到第
使用帮助 返回顶部