The deicing experiment of carbon fiber reinforced electrically conductive concrete (CFRC) slab was conducted in laboratory at first, then the deicing process of CFRC parement was analyzed by means of finite elemen...The deicing experiment of carbon fiber reinforced electrically conductive concrete (CFRC) slab was conducted in laboratory at first, then the deicing process of CFRC parement was analyzed by means of finite element method (FEM). At last, based on the energy conservation law and the computing restdts of finite element method, the influential factors including the setting of electric heating layer, environmental temperature, the thickness of ice, material parameters, and deicing power on deicing performance and energy consumption were discussed.展开更多
In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ...In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.展开更多
Aiming at the shortcomings of the existing electric energy metering method,combining with the harmonic responsibility analysis model based on the reference impedance method and the idea of apparent power decomposition...Aiming at the shortcomings of the existing electric energy metering method,combining with the harmonic responsibility analysis model based on the reference impedance method and the idea of apparent power decomposition in IEEE Std 1459-2010 standard,two new metering indicators—billing active power and billing power factor are defined.A new electric energy metering method is proposed and its specific implementation steps are given.The simulation model is built in Matlab/Simulink,and three different examples are set up.Using the simulation data,the various metering indicators need to be examined by the existing electric energy metering method and the new electric energy metering method are calculated.The calculation results show that the new electric energy metering method not only overcomes the shortcomings of the existing electric energy metering method,but also is very easy to be popularized and applied.展开更多
1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems ...1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems (WECS) at those localities. Mean seasonal and diurnal variations of wind direction and wind shear exponent have been derived. Two-parameter Weibull probability density functions (PDFs) fitting the observed monthly and annual wind speed relative frequency distributions have been implemented. As shown through three complementary statistical tests, the fitting technique was very satisfactory. A wind resource analysis at 10 m above ground level (AGL) has led to a mean power density at Bujumbura which is almost thirteen fold higher than at Muyinga. The use of the empirical power law to extrapolate wind characteristics at heights from 150 to 350 m AGL has shown that energy potential of hilltops around Muyinga was only suitable for small, individual scale wind energy applications. At the opposite, wind energy potential of ridge-tops and hilltops around Bujumbura has been found suitable for medium and large scale electricity production. For that locality and at those heights, energy outputs and capacity factors (CF or C<sub>f</sub>) have been computed for ten selected wind turbines (WTs), together with costs of electricity (COE) using the present value of cost (PVC) method. Amongst those WTs, YDF-1500-87 and S95-2.1 MW have emerged as the best options for installation owing to their highest CF and lowest COE. Moreover, an analysis of those two quantities at monthly basis for YDF-1500-87 WT has led to its best performance in the dry season. Compared to the average present COE of household hydroelectricity consumption, results of this study have evidenced economical feasibility and benefit of WECS setting in selected Burundian sites in order to supplement traditional electricity sources.展开更多
The paper considers some issues related to the evaluation of power plants using renewable energy sources: energy efficiency, economic efficiency, the share of renewable energy in the world's electricity generation. ...The paper considers some issues related to the evaluation of power plants using renewable energy sources: energy efficiency, economic efficiency, the share of renewable energy in the world's electricity generation. At one time in the world there was a myth that more energy is expended on the construction of wind and photoelectric power stations, than they produce for the service life. Adherents of this myth are still found in Russia. In response to this myth, numerous studies have been carried out for the manufacturers of wind turbines and photovoltaic modules. It was proved that these power plants spent energy on them are produced within a period of less than a year and the energy consumed by them cannot be taken into account, since it is renewable. The author showed that power plants on organic fuel and existing nuclear plants using depleted fuel with a coefficient less than unity fundamentally cannot compensate for the energy used during their construction. In the world, the concept of the LEC (Levelized Energy Cost) produced by any power plant is widely used to estimate economic efficiency. However, the formula for determining it, in the author's opinion, contains an inaccuracy, which is proposed to be eliminated. At present, there are different opinions on the role of RES (Renewable Energy Sources) in the production of electricity. A summary indicator is the share of renewable energy in the world's electricity generation. The determination of the actual share of RES and the forecast of its growth is of significant importance for the development of the world economy. The author shows the differences in the estimates and suggests an approach for establishing agreed estimates.展开更多
An automatic generation control strategy based on balance of daily total electric energy is put forward. It makes the balance between actual total generated energy controlled by automatic generation system and planned...An automatic generation control strategy based on balance of daily total electric energy is put forward. It makes the balance between actual total generated energy controlled by automatic generation system and planned total energy on base of area control error, and makes the actual 24-hour active power load curve to approach the planned load curve. The generated energy is corrected by velocity weighting factor so that it conducts dynamic regulation and reaches the speed of response. Homologous strategy is used according to the real-time data in the operation of automatic generation control. Results of simulation are perfect and power energy compensation control with ideal effect can be achieved in the particular duration.展开更多
文摘The deicing experiment of carbon fiber reinforced electrically conductive concrete (CFRC) slab was conducted in laboratory at first, then the deicing process of CFRC parement was analyzed by means of finite element method (FEM). At last, based on the energy conservation law and the computing restdts of finite element method, the influential factors including the setting of electric heating layer, environmental temperature, the thickness of ice, material parameters, and deicing power on deicing performance and energy consumption were discussed.
文摘In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.
基金National Natural Science Foundation of China(No.51367010)Science and Technology Program of Gansu Province(No.17JR5RA083)+1 种基金Program for Excellent Team of Scientific Research of Lanzhou Jiaotong University(No.201701)Scientific Research Program of Colleges and Universities of Gansu Province(No.2016B-032)。
文摘Aiming at the shortcomings of the existing electric energy metering method,combining with the harmonic responsibility analysis model based on the reference impedance method and the idea of apparent power decomposition in IEEE Std 1459-2010 standard,two new metering indicators—billing active power and billing power factor are defined.A new electric energy metering method is proposed and its specific implementation steps are given.The simulation model is built in Matlab/Simulink,and three different examples are set up.Using the simulation data,the various metering indicators need to be examined by the existing electric energy metering method and the new electric energy metering method are calculated.The calculation results show that the new electric energy metering method not only overcomes the shortcomings of the existing electric energy metering method,but also is very easy to be popularized and applied.
文摘1-year hourly wind speed data from two Burundian stations, namely Bujumbura and Muyinga, have been processed in this work to bring an efficient help for the planning and installation of wind energy conversion systems (WECS) at those localities. Mean seasonal and diurnal variations of wind direction and wind shear exponent have been derived. Two-parameter Weibull probability density functions (PDFs) fitting the observed monthly and annual wind speed relative frequency distributions have been implemented. As shown through three complementary statistical tests, the fitting technique was very satisfactory. A wind resource analysis at 10 m above ground level (AGL) has led to a mean power density at Bujumbura which is almost thirteen fold higher than at Muyinga. The use of the empirical power law to extrapolate wind characteristics at heights from 150 to 350 m AGL has shown that energy potential of hilltops around Muyinga was only suitable for small, individual scale wind energy applications. At the opposite, wind energy potential of ridge-tops and hilltops around Bujumbura has been found suitable for medium and large scale electricity production. For that locality and at those heights, energy outputs and capacity factors (CF or C<sub>f</sub>) have been computed for ten selected wind turbines (WTs), together with costs of electricity (COE) using the present value of cost (PVC) method. Amongst those WTs, YDF-1500-87 and S95-2.1 MW have emerged as the best options for installation owing to their highest CF and lowest COE. Moreover, an analysis of those two quantities at monthly basis for YDF-1500-87 WT has led to its best performance in the dry season. Compared to the average present COE of household hydroelectricity consumption, results of this study have evidenced economical feasibility and benefit of WECS setting in selected Burundian sites in order to supplement traditional electricity sources.
文摘The paper considers some issues related to the evaluation of power plants using renewable energy sources: energy efficiency, economic efficiency, the share of renewable energy in the world's electricity generation. At one time in the world there was a myth that more energy is expended on the construction of wind and photoelectric power stations, than they produce for the service life. Adherents of this myth are still found in Russia. In response to this myth, numerous studies have been carried out for the manufacturers of wind turbines and photovoltaic modules. It was proved that these power plants spent energy on them are produced within a period of less than a year and the energy consumed by them cannot be taken into account, since it is renewable. The author showed that power plants on organic fuel and existing nuclear plants using depleted fuel with a coefficient less than unity fundamentally cannot compensate for the energy used during their construction. In the world, the concept of the LEC (Levelized Energy Cost) produced by any power plant is widely used to estimate economic efficiency. However, the formula for determining it, in the author's opinion, contains an inaccuracy, which is proposed to be eliminated. At present, there are different opinions on the role of RES (Renewable Energy Sources) in the production of electricity. A summary indicator is the share of renewable energy in the world's electricity generation. The determination of the actual share of RES and the forecast of its growth is of significant importance for the development of the world economy. The author shows the differences in the estimates and suggests an approach for establishing agreed estimates.
文摘An automatic generation control strategy based on balance of daily total electric energy is put forward. It makes the balance between actual total generated energy controlled by automatic generation system and planned total energy on base of area control error, and makes the actual 24-hour active power load curve to approach the planned load curve. The generated energy is corrected by velocity weighting factor so that it conducts dynamic regulation and reaches the speed of response. Homologous strategy is used according to the real-time data in the operation of automatic generation control. Results of simulation are perfect and power energy compensation control with ideal effect can be achieved in the particular duration.