The power infrastructure of the power system is massive in size and dispersed throughout the system.Therefore,how to protect the information security in the operation and maintenance of power equipment is a difficult ...The power infrastructure of the power system is massive in size and dispersed throughout the system.Therefore,how to protect the information security in the operation and maintenance of power equipment is a difficult problem.This paper proposes an improved time-stamped blockchain technology biometric fuzzy feature for electrical equipment maintenance.Compared with previous blockchain transactions,the time-stamped fuzzy biometric signature proposed in this paper overcomes the difficulty that the key is easy to be stolen by hackers and can protect the security of information during operation and maintenance.Finally,the effectiveness of the proposed method is verified by experiments.展开更多
The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vib...The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.展开更多
The air conditioning systems in electric city buses usually operate in rapidly changing ambient conditions and are more likely to suffer from mechanical faults. Although many fault detection and diagnosis (FDD) method...The air conditioning systems in electric city buses usually operate in rapidly changing ambient conditions and are more likely to suffer from mechanical faults. Although many fault detection and diagnosis (FDD) methods have been developed for building air conditioning systems, they are difficult to be applied to bus air conditioners since its operation is highly dynamic and fault-free data are usually unavailable. Therefore, this paper proposes an FDD method for electric bus air conditioners to tackle the above issues. First, the method identifies faults in an unsupervised manner by comparing selected features among a group of peer systems. Then, considering the features are influenced by the operating conditions, Gaussian process regression (GPR) models are established to find the relationships between each feature and its influential parameters. The probabilistic nature of the GPR is used to differentiate predictions with large uncertainty, which are then excluded from FDD. In this way, robustness of the method is evidently improved. Finally, fault indexes are defined to detect and diagnose mechanical faults. We applied the method to a group of air conditioners in a city bus fleet. Results showed that it can effectively identify refrigerant undercharge and indoor and outdoor fan problems with low false positive/genitive rates. Also, the method is highly robust and not sensitive to the faulty systems in the bus fleet.展开更多
Remote monitoring and diagnosis (RMD) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitorin...Remote monitoring and diagnosis (RMD) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitoring and diagnosis system can be established. In this paper, the model of an Internet based remote monitoring and diagnosis system is presented; the function of every part of the RMD system is discussed. Then, we introduce a practical example of a remote monitoring and diagnosis system that we established in a factory; its traits and functions are described.展开更多
针对多型传感器采样频率不统一,现有机器学习算法难以有效处理混频数据输入,无法充分挖掘混频信号中的设备故障特征的问题,首先提出一种混频数据输入下的长短时记忆网络(multi-frequency long and short term memory network,MF-LSTM)架...针对多型传感器采样频率不统一,现有机器学习算法难以有效处理混频数据输入,无法充分挖掘混频信号中的设备故障特征的问题,首先提出一种混频数据输入下的长短时记忆网络(multi-frequency long and short term memory network,MF-LSTM)架构;然后,对不同采样频率的状态数据分别进行特征提取并进行特征融合,实现混频数据输入下的电气设备的故障诊断任务;最后,利用凯斯西储大学轴承数据集对所提模型进行了算例验证,结果表明:相比于单频信号输入,混频输入平均提高故障诊断精度1.72%。该实验结果证明了所提出的基于MF-LSTM的故障诊断框架的有效性和混频数据输入的必要性。展开更多
基金This research was funded by science and technology project of State Grid JiangSu Electric Power Co.,Ltd.(Research on Key Technologies of power network security digital identity authentication and management and control based on blockchain,Grant No.is J2021021).
文摘The power infrastructure of the power system is massive in size and dispersed throughout the system.Therefore,how to protect the information security in the operation and maintenance of power equipment is a difficult problem.This paper proposes an improved time-stamped blockchain technology biometric fuzzy feature for electrical equipment maintenance.Compared with previous blockchain transactions,the time-stamped fuzzy biometric signature proposed in this paper overcomes the difficulty that the key is easy to be stolen by hackers and can protect the security of information during operation and maintenance.Finally,the effectiveness of the proposed method is verified by experiments.
文摘The main sea water pump is the key equipment for the floating production storage and offloading (FPSO). Affected by some factors such as hull deformation, sea water corrosion, rigid base and pipeline stress, the vibration value of main sea water pump in the horizontal direction is abnormally high and malfunctions usually happen. Therefore, it is essential to make fault diagnosis of main sea water pump, By conventional off-line monitoring and vibration amplitude spectrum analysis, the fault cycle is found and the alarm value and stop value of equipment are set, which is helpful to equipment maintenance and accident prevention.
基金support of this research by the Research Talent Hub for ITF Project(ITP/002/22LP)sponsored by Hong Kong Innovation and Technology Fund and the Research Grants Council of the Hong Kong SAR(C5018-20GF).
文摘The air conditioning systems in electric city buses usually operate in rapidly changing ambient conditions and are more likely to suffer from mechanical faults. Although many fault detection and diagnosis (FDD) methods have been developed for building air conditioning systems, they are difficult to be applied to bus air conditioners since its operation is highly dynamic and fault-free data are usually unavailable. Therefore, this paper proposes an FDD method for electric bus air conditioners to tackle the above issues. First, the method identifies faults in an unsupervised manner by comparing selected features among a group of peer systems. Then, considering the features are influenced by the operating conditions, Gaussian process regression (GPR) models are established to find the relationships between each feature and its influential parameters. The probabilistic nature of the GPR is used to differentiate predictions with large uncertainty, which are then excluded from FDD. In this way, robustness of the method is evidently improved. Finally, fault indexes are defined to detect and diagnose mechanical faults. We applied the method to a group of air conditioners in a city bus fleet. Results showed that it can effectively identify refrigerant undercharge and indoor and outdoor fan problems with low false positive/genitive rates. Also, the method is highly robust and not sensitive to the faulty systems in the bus fleet.
基金supported by the National Natural Science Foundation of China ( No. 50335030, 50175087 and50305012).
文摘Remote monitoring and diagnosis (RMD) is a new kind of monitoring and diagnosis technology that combines computer science, communication technology and fault diagnosis technology. Via the Internet a remote monitoring and diagnosis system can be established. In this paper, the model of an Internet based remote monitoring and diagnosis system is presented; the function of every part of the RMD system is discussed. Then, we introduce a practical example of a remote monitoring and diagnosis system that we established in a factory; its traits and functions are described.
文摘针对多型传感器采样频率不统一,现有机器学习算法难以有效处理混频数据输入,无法充分挖掘混频信号中的设备故障特征的问题,首先提出一种混频数据输入下的长短时记忆网络(multi-frequency long and short term memory network,MF-LSTM)架构;然后,对不同采样频率的状态数据分别进行特征提取并进行特征融合,实现混频数据输入下的电气设备的故障诊断任务;最后,利用凯斯西储大学轴承数据集对所提模型进行了算例验证,结果表明:相比于单频信号输入,混频输入平均提高故障诊断精度1.72%。该实验结果证明了所提出的基于MF-LSTM的故障诊断框架的有效性和混频数据输入的必要性。