Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile me...Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.展开更多
In this paper, method combined vapor transportation with in-situ chemical reaction is employed to synthesize Cu(TCNQ) nanowires. The typical diameter of nanowires is 50-500 nm with high uniformity. The electrical swit...In this paper, method combined vapor transportation with in-situ chemical reaction is employed to synthesize Cu(TCNQ) nanowires. The typical diameter of nanowires is 50-500 nm with high uniformity. The electrical switching characteristics of single nanowire are observed. The ON-OFF resistance ratio for switching reaches 10~4. The investigation reveals a linear relationship between the switching threshold and the spacing between the two electrodes. The temporal response of the switching process is 30 ns and the switch exhibits good reproducibility. The collapse of the nanowire under the condition of current surge is also discussed. It is believed that the Cu(TCNQ) nanowire could be promising for applications in nanoelectronics.展开更多
The design,modeling,and simulation of a micro electrical switch for fuze are presented.It consists of springemass system with zigzag slot in mass,latching and electrical connection mechanism and movement-limit mechani...The design,modeling,and simulation of a micro electrical switch for fuze are presented.It consists of springemass system with zigzag slot in mass,latching and electrical connection mechanism and movement-limit mechanism.The switch keeps off-state until it is subjected to an acceleration when fuze is launched normally.The acceleration is simulated as half-sine pulse with specific amplitude and duration.The dynamics model of the switch is studied.Based on zigzag slot in mass,the methods used for recognizing acceleration load are established and analyzed according to the dynamics theory.Two typical half-sine accelerations are loaded on the switch in simulation.The simulation results are in accordance with those of theoretical analysis.The inertial response characteristics of the switch can ensure that the fuze power supply and circuit are connected safely and reliably.展开更多
Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in ...Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in order to compare the aging phenome- non under multi-stress conditions, additional EPR cable samples were aged by rated AC voltage and current with switching impulses superimposed. We used measurements of partial discharge parameters to monitor the cables’ conditions during their aging process, and the AC breakdown voltages measurement to evaluate the cables after aging. Moreover, the Fourier transform infrared (FTIR) spectroscopy measurements revealed the changes of insulation materials after aging. The measurement results confirm that the accelerated aging of cable samples had taken place. The impacts of each individual aging factor are shown through the selected measurements and comparison. The study also helps to assess the reliability of the XLPE and EPR cables under similar condition while serving in power systems.展开更多
For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging ...For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.展开更多
Photostructural changes and electrical switching are the well-known features of amorphous chalcogenides, also known as glassy semiconductors. Although the both phenomena were intensively studied experimentally and hav...Photostructural changes and electrical switching are the well-known features of amorphous chalcogenides, also known as glassy semiconductors. Although the both phenomena were intensively studied experimentally and have a wide practical application, their nature is debated up to now. I propose a new approach that considers glass as a self-organizing system owing to characteristic instability of chemical bonding in the form of bond wave. The bond wave model is shown to be suitable for explanation of the observed effects in thin films under the action of light or electrical field, a result that opens a new way for understanding and managing the processes in glassy semiconductors.展开更多
We introduce a novel switching mechanism that relies on the bistability of a simple nonlinear electrical resonator which incorporates a varactor diode as its capacitive element. The switching action can be made fast a...We introduce a novel switching mechanism that relies on the bistability of a simple nonlinear electrical resonator which incorporates a varactor diode as its capacitive element. The switching action can be made fast and is self-contained in that no further circuitry is necessary. Unlike a flip-flop, whose state is flipped by applying a TTL pulse, this nonlinear switch can be engaged external to the circuit via magnetic, inductive or capacitive coupling;in this way, the switch becomes intrinsically touch-sensitive. Alternatively, the switching action can also be accomplished using frequency-shift-keying (FSK) modulation, which holds the promise of fast manipulation of the memory state. We demonstrate the potential application of these ideas by constructing a touch-sensitive LED lattice.展开更多
This paper presents a cost-effective driving system for automotive applications based on a double rotor electrically excited flux switching machine(FSM).Benefiting from a double rotor topology,this FSM can realize a d...This paper presents a cost-effective driving system for automotive applications based on a double rotor electrically excited flux switching machine(FSM).Benefiting from a double rotor topology,this FSM can realize a drum winding design and thus winding ends are effectively shorten and the copper loss is mitigated.The machine structure,operation principle and design consideration are studied and further verified by time-stepping finite element method.Moreover,three topologies of drive circuit for the proposed FSM are introduced.By using electromagnetic-circuit coupling simulation,a comparison between three different three drive systems are performed,with focus on the system cost and overall electromagnetic performance,especially the effect of current control and torque ripple.A prototype is established and tested.Relevant experimental results verify the effectiveness of the proposed new FSM drive system.展开更多
A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, com...A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.展开更多
The process of 180°domain switching in PbTiO_3 single crystal under an antiparallel electric field was investigated by the three-dimensional phase field simulation,especially the effect of electric field on the t...The process of 180°domain switching in PbTiO_3 single crystal under an antiparallel electric field was investigated by the three-dimensional phase field simulation,especially the effect of electric field on the type and duration of domain switching.It is found that the polarization reversal of domains takes place under an antiparallel electric field in PbTiO_3 single crystal.The results of the phase field simulation indicate that there is only 90°domain switching under a weak electric field.With the rise of the electric field,180°domain switching appears.If the electric field is strengthened further,90°domain switching disappears and the duration of domain switching is shortened.展开更多
In order to reduce the torque ripple,increase the average torque and optimize the drive performance of the switched reluctance motor (SRM),the nonlinear dynamic model of SRM is established in the MATLAB /Simulink envi...In order to reduce the torque ripple,increase the average torque and optimize the drive performance of the switched reluctance motor (SRM),the nonlinear dynamic model of SRM is established in the MATLAB /Simulink environment.The effects of the turn-on and turn-off angles are investigated by the simulation results of the dynamic model,and the function is made among the rotor speed,turn-on angle and turn-off angle.To optimize the torque dynamic performance,the two-objective simultaneous optimization function is proposed by two weight factors.And the optimized turn-on and turn-off angles as functions of rotor speed are developed by using the simultaneous optimization method.Then the optimized torque controller is designed based on the optimized turn-on and turn-off angles.The simulation results show that the optimized torque controller designed in this paper can effectively reduce the torque ripple and increase the average torque,and optimize the torque dynamic performance of the SRM.展开更多
In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensivel...In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensively reviewed in terms of basic features,merits and demerits,and compared for HEV/EV traction applications.Their latest developments are highlighted while their electromagnetic performance are quantitatively compared based on the same specification as the Prius 2010 interior PM(IPM)machine,including the torque/power-speed characteristics,power factor,efficiency map,and drive cycle based overall efficiency.It is found that PM-assisted synchronous reluctance machines are the most promising alternatives to IPM machines with lower cost and potentially higher overall efficiency.Although IMs are cheaper and have better overload capability,they exhibit lower efficiency and power factor.Other electrical machines,such as synchronous reluctance machines,wound field machines,as well as many other newly developed machines,are currently less attractive due to lower torque density and efficiency.展开更多
This paper deals with a mode III interfacial crack subject to anti-plane stress and in-plane electric fields. The analysis concentrates on the tuning of fracture toughness from non-uniform ferroelectric-ferroelastic d...This paper deals with a mode III interfacial crack subject to anti-plane stress and in-plane electric fields. The analysis concentrates on the tuning of fracture toughness from non-uniform ferroelectric-ferroelastic domain switching by an electric field. The electric loading changes the size of the asymmetric switching zone. Employing the weight function method, we obtain the electrically-dependent switch toughening for stationary and quasi-static growing interfacial cracks, respectively. Multi-domain solutions are derived for non-poled and fully-poled ferroelectric composites. Numerical results are presented on the electric field tuning of the critical applied stress intensity factor. The research provides ways to optimize fracture properties of ferroelectric composites by altering the electric field.展开更多
High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manu...High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.展开更多
Among the factors slowing down the production of the electric vehicles in big series, we mention the problem of weak autonomy directly bound to the weak storage capacity of the batteries. In this context, this paper d...Among the factors slowing down the production of the electric vehicles in big series, we mention the problem of weak autonomy directly bound to the weak storage capacity of the batteries. In this context, this paper describes a strategy of power chain vector control reducing the consumption and integrating a system of energy recuperation. Besides, this power chain is conceived by an analytic approach optimizing the autonomy and reducing the production cost of electric vehicle. The choice of the static converter to electromagnetic switches is a determining factor for the reliability of the global system and the reduction of the consumption. This choice poses a problem of adaptation of this low-frequency converter type to the global system that will be treated in this paper.展开更多
This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general ...This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general construction, the basic working principle and the design concept of the proposed HEFSM are outlined. Then, the initial drive performances of the proposed HEFSM are evaluated based on 2D-FEA, in which the design restrictions, specifications and target performances are similar with conventional interior permanent magnet synchronous motor (IPMSM) used in HEV. Since the initial results fail to achieve the target performances, deterministic design optimization approach is used to treat several design parameters. After several cycles of optimization, the proposed motor makes it possible to obtain the target torque and power of 333 Nm and 123 kW, respectively. In addition, due to definite advantage of robust rotor structure of HEFSM, rotor mechanical stress prediction at maximum speed of 12,400 r/min is much lower than the mechanical stress in conventional IPMSM. Finally, the maximum torque and power density of the final design HEFSM are approximately 11.41 Nm/kg and 5.55 kW/kg, respectively, which is 19.98% and 58.12% more than the torque and power density in existing IPMSM for Lexus RX400h.展开更多
Introduction In recent 10 years, due to fast developing of economy inChina, serious power shortage occurs. The system frequency oftenfell to abnormal values in most networks. For the security of powersystems, forced s...Introduction In recent 10 years, due to fast developing of economy inChina, serious power shortage occurs. The system frequency oftenfell to abnormal values in most networks. For the security of powersystems, forced switch off of feeders from the distribution substationoften happend to recover normal frequency. In fact, the speed of development of Chinese power industryis very high in this period. The yearly average increasing rate ofgenerating capacity was about 8%. The yearly newly installed ca-pacity was more than 9000 MW in recent 4 years. But the展开更多
基金supported by the National Key Research and Development Program of China (Grant No.2018YFE0203802)Natural Science Foundation of Hubei Province, China (Grant No.2022CFA031)Dongguan Innovative Research Team Program (2020607101007)。
文摘Owing to the advantages of simple structure,low power consumption and high-density integration,memristors or memristive devices are attracting increasing attention in the fields such as next generation non-volatile memories,neuromorphic computation and data encryption.However,the deposition of memristive films often requires expensive equipment,strict vacuum conditions,high energy consumption,and extended processing times.In contrast,electrochemical anodizing can produce metal oxide films quickly(e.g.10 s) under ambient conditions.By means of the anodizing technique,oxide films,oxide nanotubes,nanowires and nanodots can be fabricated to prepare memristors.Oxide film thickness,nanostructures,defect concentrations,etc,can be varied to regulate device performances by adjusting oxidation parameters such as voltage,current and time.Thus memristors fabricated by the anodic oxidation technique can achieve high device consistency,low variation,and ultrahigh yield rate.This article provides a comprehensive review of the research progress in the field of anodic oxidation assisted fabrication of memristors.Firstly,the principle of anodic oxidation is introduced;then,different types of memristors produced by anodic oxidation and their applications are presented;finally,features and challenges of anodic oxidation for memristor production are elaborated.
基金financial support from Shanghai Science and Technology Development Fund(No.0752nm016)Shanghai Leading Academic Development Project(No.B113)
文摘In this paper, method combined vapor transportation with in-situ chemical reaction is employed to synthesize Cu(TCNQ) nanowires. The typical diameter of nanowires is 50-500 nm with high uniformity. The electrical switching characteristics of single nanowire are observed. The ON-OFF resistance ratio for switching reaches 10~4. The investigation reveals a linear relationship between the switching threshold and the spacing between the two electrodes. The temporal response of the switching process is 30 ns and the switch exhibits good reproducibility. The collapse of the nanowire under the condition of current surge is also discussed. It is believed that the Cu(TCNQ) nanowire could be promising for applications in nanoelectronics.
文摘The design,modeling,and simulation of a micro electrical switch for fuze are presented.It consists of springemass system with zigzag slot in mass,latching and electrical connection mechanism and movement-limit mechanism.The switch keeps off-state until it is subjected to an acceleration when fuze is launched normally.The acceleration is simulated as half-sine pulse with specific amplitude and duration.The dynamics model of the switch is studied.Based on zigzag slot in mass,the methods used for recognizing acceleration load are established and analyzed according to the dynamics theory.Two typical half-sine accelerations are loaded on the switch in simulation.The simulation results are in accordance with those of theoretical analysis.The inertial response characteristics of the switch can ensure that the fuze power supply and circuit are connected safely and reliably.
基金Electric Ship Research De- velopment and Consortium (ESRDC) for providing financial support for the research work
文摘Due to the insufficient information regarding the aging phenomenon of cables caused by switching impulses, we aged 15 kV XLPE and EPR cable samples by 10 000 switching impulses in experiments and tested them. Plus in order to compare the aging phenome- non under multi-stress conditions, additional EPR cable samples were aged by rated AC voltage and current with switching impulses superimposed. We used measurements of partial discharge parameters to monitor the cables’ conditions during their aging process, and the AC breakdown voltages measurement to evaluate the cables after aging. Moreover, the Fourier transform infrared (FTIR) spectroscopy measurements revealed the changes of insulation materials after aging. The measurement results confirm that the accelerated aging of cable samples had taken place. The impacts of each individual aging factor are shown through the selected measurements and comparison. The study also helps to assess the reliability of the XLPE and EPR cables under similar condition while serving in power systems.
基金funded by Tsinghua University-Weichai Power Intelligent Manufacturing Joint Research Institute (WCDL-GH-2022-0131)。
文摘For electric vehicles (EVs),it is necessary to improve endurance mileage by improving the efficiency.There exists a trend towards increasing the system voltage and switching frequency,contributing to improve charging speed and power density.However,this trend poses significant challenges for high-voltage and high-frequency motor controllers,which are plagued by increased switching losses and pronounced switching oscillations as consequences of hard switching.The deployment of soft switching technology presents a viable solution to mitigate these issues.This paper reviews the applications of soft switching technologies for three-phase inverters and classifies them based on distinct characteristics.For each type of inverter,the advantages and disadvantages are evaluated.Then,the paper introduces the research progress and control methods of soft switching inverters (SSIs).Moreover,it presents a comparative analysis among the conventional hard switching inverters (HSIs),an active clamping resonant DC link inverter (ACRDCLI) and an auxiliary resonant commuted pole inverter (ARCPI).Finally,the problems and prospects of soft switching technology applied to motor controllers for EVs are put forward.
文摘Photostructural changes and electrical switching are the well-known features of amorphous chalcogenides, also known as glassy semiconductors. Although the both phenomena were intensively studied experimentally and have a wide practical application, their nature is debated up to now. I propose a new approach that considers glass as a self-organizing system owing to characteristic instability of chemical bonding in the form of bond wave. The bond wave model is shown to be suitable for explanation of the observed effects in thin films under the action of light or electrical field, a result that opens a new way for understanding and managing the processes in glassy semiconductors.
文摘We introduce a novel switching mechanism that relies on the bistability of a simple nonlinear electrical resonator which incorporates a varactor diode as its capacitive element. The switching action can be made fast and is self-contained in that no further circuitry is necessary. Unlike a flip-flop, whose state is flipped by applying a TTL pulse, this nonlinear switch can be engaged external to the circuit via magnetic, inductive or capacitive coupling;in this way, the switch becomes intrinsically touch-sensitive. Alternatively, the switching action can also be accomplished using frequency-shift-keying (FSK) modulation, which holds the promise of fast manipulation of the memory state. We demonstrate the potential application of these ideas by constructing a touch-sensitive LED lattice.
基金This work was supported by the Research Grant Council of the Hong Kong Government under Project PolyU 152509/16E,1ZE5P,and in part by the National Natural Science Foundation of China under Grant 51707171.
文摘This paper presents a cost-effective driving system for automotive applications based on a double rotor electrically excited flux switching machine(FSM).Benefiting from a double rotor topology,this FSM can realize a drum winding design and thus winding ends are effectively shorten and the copper loss is mitigated.The machine structure,operation principle and design consideration are studied and further verified by time-stepping finite element method.Moreover,three topologies of drive circuit for the proposed FSM are introduced.By using electromagnetic-circuit coupling simulation,a comparison between three different three drive systems are performed,with focus on the system cost and overall electromagnetic performance,especially the effect of current control and torque ripple.A prototype is established and tested.Relevant experimental results verify the effectiveness of the proposed new FSM drive system.
文摘A control strategy of switched reluctance motor (SRM)for electric vehicle applications is proposed. In electric vehicle application, the switched reluctance motor is a good choice with its flexible control method, compactness, robustness, high efficiency and high starting torque. In this paper, the control strategy of motoring and regenerative braking for electric vehicle application is presented. Computer simulations are employed to analyze the steady state behavior of SRM propulsion system. Experimental results in electric motorcycle are provided to demonstrate the validity of SRM propulsion system.
基金supported by the National Natural Science Foundation of China(Nos.50572006 and 50632010)
文摘The process of 180°domain switching in PbTiO_3 single crystal under an antiparallel electric field was investigated by the three-dimensional phase field simulation,especially the effect of electric field on the type and duration of domain switching.It is found that the polarization reversal of domains takes place under an antiparallel electric field in PbTiO_3 single crystal.The results of the phase field simulation indicate that there is only 90°domain switching under a weak electric field.With the rise of the electric field,180°domain switching appears.If the electric field is strengthened further,90°domain switching disappears and the duration of domain switching is shortened.
基金Sponsored by the Ph.D.Program Foundation of Ministry of Education of China(Grant No.20092302120)
文摘In order to reduce the torque ripple,increase the average torque and optimize the drive performance of the switched reluctance motor (SRM),the nonlinear dynamic model of SRM is established in the MATLAB /Simulink environment.The effects of the turn-on and turn-off angles are investigated by the simulation results of the dynamic model,and the function is made among the rotor speed,turn-on angle and turn-off angle.To optimize the torque dynamic performance,the two-objective simultaneous optimization function is proposed by two weight factors.And the optimized turn-on and turn-off angles as functions of rotor speed are developed by using the simultaneous optimization method.Then the optimized torque controller is designed based on the optimized turn-on and turn-off angles.The simulation results show that the optimized torque controller designed in this paper can effectively reduce the torque ripple and increase the average torque,and optimize the torque dynamic performance of the SRM.
基金This work is partially supported by Guangdong Welling Motor Manufacturing Co.,Ltd and Guangdong Innovative Research Team Program(No.2011N084)China,Valeo Electrical Systems,France,and the Royal Academy of Engineering/Siemens Research Chair Program,UK.
文摘In this paper,various types of sinusoidal-fed electrical machines,i.e.induction machines(IMs),permanent magnet(PM)machines,synchronous reluctance machines,variable flux machines,wound field machines,are comprehensively reviewed in terms of basic features,merits and demerits,and compared for HEV/EV traction applications.Their latest developments are highlighted while their electromagnetic performance are quantitatively compared based on the same specification as the Prius 2010 interior PM(IPM)machine,including the torque/power-speed characteristics,power factor,efficiency map,and drive cycle based overall efficiency.It is found that PM-assisted synchronous reluctance machines are the most promising alternatives to IPM machines with lower cost and potentially higher overall efficiency.Although IMs are cheaper and have better overload capability,they exhibit lower efficiency and power factor.Other electrical machines,such as synchronous reluctance machines,wound field machines,as well as many other newly developed machines,are currently less attractive due to lower torque density and efficiency.
基金sponsored by the National Natural Science Foundation of China (Grants 11090334, 11572227)
文摘This paper deals with a mode III interfacial crack subject to anti-plane stress and in-plane electric fields. The analysis concentrates on the tuning of fracture toughness from non-uniform ferroelectric-ferroelastic domain switching by an electric field. The electric loading changes the size of the asymmetric switching zone. Employing the weight function method, we obtain the electrically-dependent switch toughening for stationary and quasi-static growing interfacial cracks, respectively. Multi-domain solutions are derived for non-poled and fully-poled ferroelectric composites. Numerical results are presented on the electric field tuning of the critical applied stress intensity factor. The research provides ways to optimize fracture properties of ferroelectric composites by altering the electric field.
文摘High Speed Drilling Electrical Discharge Machining (HSDEDM) uses controlled electric sparks to erode the metal in a work-piece. Through the years, HSDEDM process has widely been used in high speed drilling and in manufacturing large aspect ratio holes for hard-to-machine material. The power supplies of HSDEDM providing high power applica-tions can have different topologies. In this paper, a novel Pulsed-Width-Modulated (PWM) half-bridge HSDEDM power supply that achieves Zero-Voltage-Switching (ZVS) for switches and Zero-Current-Switching (ZCS) for the dis-charge gap has been developed. This power supply has excellent features that include minimal component count and inherent protection under short circuit conditions. This topology has an energy conservation feature and removes the need for output bulk capacitors and resistances. Energy used in the erosion process will be controlled by the switched IGBTs in the half-bridge network and be transferred to the gap between the tool and work-piece. The relative tool wear and machining speed of our proposed topology have been compared with that of a normal power supply with current limiting resistances.
文摘Among the factors slowing down the production of the electric vehicles in big series, we mention the problem of weak autonomy directly bound to the weak storage capacity of the batteries. In this context, this paper describes a strategy of power chain vector control reducing the consumption and integrating a system of energy recuperation. Besides, this power chain is conceived by an analytic approach optimizing the autonomy and reducing the production cost of electric vehicle. The choice of the static converter to electromagnetic switches is a determining factor for the reliability of the global system and the reduction of the consumption. This choice poses a problem of adaptation of this low-frequency converter type to the global system that will be treated in this paper.
文摘This paper presents design feasibility study and development of a new hybrid excitation flux switching motor (HEFSM) as a contender for traction drives in hybrid electric vehicles (HEVs). Initially, the motor general construction, the basic working principle and the design concept of the proposed HEFSM are outlined. Then, the initial drive performances of the proposed HEFSM are evaluated based on 2D-FEA, in which the design restrictions, specifications and target performances are similar with conventional interior permanent magnet synchronous motor (IPMSM) used in HEV. Since the initial results fail to achieve the target performances, deterministic design optimization approach is used to treat several design parameters. After several cycles of optimization, the proposed motor makes it possible to obtain the target torque and power of 333 Nm and 123 kW, respectively. In addition, due to definite advantage of robust rotor structure of HEFSM, rotor mechanical stress prediction at maximum speed of 12,400 r/min is much lower than the mechanical stress in conventional IPMSM. Finally, the maximum torque and power density of the final design HEFSM are approximately 11.41 Nm/kg and 5.55 kW/kg, respectively, which is 19.98% and 58.12% more than the torque and power density in existing IPMSM for Lexus RX400h.
文摘Introduction In recent 10 years, due to fast developing of economy inChina, serious power shortage occurs. The system frequency oftenfell to abnormal values in most networks. For the security of powersystems, forced switch off of feeders from the distribution substationoften happend to recover normal frequency. In fact, the speed of development of Chinese power industryis very high in this period. The yearly average increasing rate ofgenerating capacity was about 8%. The yearly newly installed ca-pacity was more than 9000 MW in recent 4 years. But the