Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests...Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests.Three-month field exposure results showed that average corrosion rate of Cu measured by ER sensor was well in accordance with that by weight loss method.During cyclic wetting−drying test,EIS was proven to reflect sensitively time of wetting and drying on the surface of sensor.Although corrosion rate obtained from EIS had a similar tendency to that obtained from ER sensors,the former was more dependent on environmental humidity than the latter.When relative humidity was low than 60%,corrosion rate of Cu measured by EIS was much lower than that by weight loss method,mainly attributing to the fact that impedance sensor failed to detect corrosion current of interlaced Cu electrodes due to the breakdown of conductive passage composed of absorbed thin liquid film under low humidity condition.Promisingly,ER sensor was proven to be more suitable for atmospheric corrosion monitoring than electrochemical techniques because it could sensitively monitor thickness loss of Cu foil according to the Ohmic law,no matter how dry or wet the sensor surface is.展开更多
Position, width and fragmentation level of fracture zones and position, sig-nificance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in ...Position, width and fragmentation level of fracture zones and position, sig-nificance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.展开更多
This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the ...This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%. A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT tech- nique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.展开更多
The four-probe technique is widely used in the characterization of electrical properties of solids and thin films. To investigate the influence of finite size probes with non-planar contact on the standard four-probe ...The four-probe technique is widely used in the characterization of electrical properties of solids and thin films. To investigate the influence of finite size probes with non-planar contact on the standard four-probe method, we have proposed an image method to simulate the potential distribution within the specimen. The numerical results show that for infinitely thick samples, the standard method can only provide accurate determination of resistivity (relative error below 1%) when the ratio of the average inter-electrode spacing to the diameter of the probe is greater than 3. We have also found that disregarding the probe size brings a less dominate error than that introduced by the approximate formula, when the sample's thickness is close to the inter-electrode spacing.展开更多
基金the National Natural Science Foundation of China(No.51771079)the China Postdoctoral Science Foundation(No.2020M682650).
文摘Electrochemical impedance(EIS)and thin electrical resistance(ER)sensors were invented for atmospheric corrosion measurement of copper(Cu)during cyclic wetting−drying/high−low temperature tests and field exposure tests.Three-month field exposure results showed that average corrosion rate of Cu measured by ER sensor was well in accordance with that by weight loss method.During cyclic wetting−drying test,EIS was proven to reflect sensitively time of wetting and drying on the surface of sensor.Although corrosion rate obtained from EIS had a similar tendency to that obtained from ER sensors,the former was more dependent on environmental humidity than the latter.When relative humidity was low than 60%,corrosion rate of Cu measured by EIS was much lower than that by weight loss method,mainly attributing to the fact that impedance sensor failed to detect corrosion current of interlaced Cu electrodes due to the breakdown of conductive passage composed of absorbed thin liquid film under low humidity condition.Promisingly,ER sensor was proven to be more suitable for atmospheric corrosion monitoring than electrochemical techniques because it could sensitively monitor thickness loss of Cu foil according to the Ohmic law,no matter how dry or wet the sensor surface is.
文摘Position, width and fragmentation level of fracture zones and position, sig-nificance and characteristic distance of fractures were aimed to determine in a carbonate aquifer. These are fundamental parameters, e.g. in hydrogeological modelling of aquifers, due to their role in subsurface water movements. The description of small scale fracture systems is however a challenging task. In the test area (Kádárta, Bakony Mts, Hungary), two methods proved to be applicable to get reasonable information about the fractures: Electrical Resistivity Tomography (ERT) and Pricking-Probe (PriP). PriP is a simple mechanical tool which has been successfully applied in archaeological investigations. ERT results demonstrated its applicability in this small scale fracture study. PriP proved to be a good verification tool both for fracture zone mapping and detecting fractures, but in certain areas, it produced different results than the ERT. The applicability of this method has therefore to be tested yet, although its problems most probably origin from human activity which reorganises the near-surface debris distribution. In the test site, both methods displayed fracture zones including a very characteristic one and a number of individual fractures and determined their characteristic distance and significance. Both methods prove to be able to produce hydrogeologically important parameters even individually, but their simultaneous application is recommended to decrease the possible discrepancies.
基金Project (No. 15933) supported by the Royal Society-Chinese Acad-emy of Sciences Joint Project
文摘This paper presents the use of a high performance dual-plane electrical resistance tomography (ERT) system and a local dual-sensor conductance probe to measure the vertical upward oil-in-water pipe flows in which the mean oil volume fraction is up to 23.1%. A sensitivity coefficient back-projection (SBP) algorithm was adopted to reconstruct the flow distributions and a cross correlation method was applied to obtain the oil velocity distributions. The oil volume fraction and velocity distributions obtained from both measurement techniques were compared and good agreement was found, which indicates that the ERT tech- nique can be used to measure the low fraction oil-water flows. Finally, the factors affecting measurement precision were discussed.
基金Project supported by the Innovation Project of the Shanghai Institute of Technical Physics,CAS(No.CXJJ-Q-DX-57)
文摘The four-probe technique is widely used in the characterization of electrical properties of solids and thin films. To investigate the influence of finite size probes with non-planar contact on the standard four-probe method, we have proposed an image method to simulate the potential distribution within the specimen. The numerical results show that for infinitely thick samples, the standard method can only provide accurate determination of resistivity (relative error below 1%) when the ratio of the average inter-electrode spacing to the diameter of the probe is greater than 3. We have also found that disregarding the probe size brings a less dominate error than that introduced by the approximate formula, when the sample's thickness is close to the inter-electrode spacing.