As science and technology continue to develop,power equipment has become an indispensable part of industrial production and daily life.Whether it is the precise automation machinery utilized on production lines or the...As science and technology continue to develop,power equipment has become an indispensable part of industrial production and daily life.Whether it is the precise automation machinery utilized on production lines or the convenient electrical appliances found in households,their functionality relies heavily on electrical technology.Nonetheless,without stringent safety and performance assurances,these devices could potentially endanger lives and property.Thus,this paper explores the development strategy for establishing a standardized system within the electrical testing service industry,aiming to ensure safety and reliability.展开更多
A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characteriz...A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.展开更多
High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various phys...High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various physical fields involved in HVEP still need to be further understood.In this study,we establish a 2D numerical model of multi-physical field coupling of the electrical breakdown of porous rock with randomly distributed pores to investigate the effect of pore characteristics(porosity,pore media composition)on the partial electrical breakdown of rock(i.e.the generation of a plasma channel inside the rock).Our findings indicate that the generation of a plasma channel is directionally selective and extends in the direction of a weak electrical breakdown intensity.As the porosity of the rock increases,so does the intensity of the electric field in the‘electrical damage’region—the greater the porosity,the greater the effectiveness of rock-breaking.As the fraction of pore fluid(S_(water)/S_(air))gradually declines,the generation time of the plasma channel decreases,and the efficacy of rock-breaking by HVEP increases.In addition,in this study,we conducted an indoor experiment utilizing an electric pulse drill to break down the rock in order to recreate the growth mode of the plasma channel in the rock.Moreover,the experimental results are consistent with the simulation results.In addition,the development of this type of partial electrical breakdown is confirmed to be related to electrode polarity and pore characteristics via the experiment of the symmetrical needle-needle electrode arrangement,which further demonstrates the mechanism of partial electrical breakdown.This research is significant for comprehending the process of electric impulse rock-breaking and gives theoretical guidance and technological support for advancing electric impulse drilling technology.展开更多
The electrical parameters of the rock and soil are closely related to the physical parameters.By measuring the resistivity and polarizability of rock and soil reasonably,information on physical parameters such as mois...The electrical parameters of the rock and soil are closely related to the physical parameters.By measuring the resistivity and polarizability of rock and soil reasonably,information on physical parameters such as moisture content,pore ratio and compaction degree can be obtained.A system for testing the electrical parameters of soil samples based on the middle step quadrupole method is developed in this article.The system uses a series of copper needles as the electrodes of the soil-mounted test tube,and uses a multi-point multi-layer test method for layered data acquisition,which can solve the problems caused by the capacitance phenomenon and the heterogeneity of the soil sample.At the same time,factors affecting the test results,such as uneven soil preparation and water addition and electrode disturbance,are regarded as noise.A data-analysis method based on median filtering is proposed to process and analyse the test results,and the relationships between resistivity,polarizability,moisture content and compaction degree of the sample are obtained.The results show that the resistivity decreases nonlinearly as moisture content increases,and the correlation with compaction is not strong;the polarizability increases as moisture content increases with fluctuation,and it first increases and then decreases with an increase in compaction.展开更多
基金Tianshui City Science and Technology Support Plan Project:2023-FZJHK-2813。
文摘As science and technology continue to develop,power equipment has become an indispensable part of industrial production and daily life.Whether it is the precise automation machinery utilized on production lines or the convenient electrical appliances found in households,their functionality relies heavily on electrical technology.Nonetheless,without stringent safety and performance assurances,these devices could potentially endanger lives and property.Thus,this paper explores the development strategy for establishing a standardized system within the electrical testing service industry,aiming to ensure safety and reliability.
基金supported by the National Defense Science and Technology Innovation Zone Project(No.18-H863-05-ZT-001-018-09)
文摘A novel sensor for ocean electric field testing has been fabricated by polyacrylonitrile-based on carbon fibers with electro-chemical oxidation.The surface profile characteristics of the carbon fibers were characterized by scanning electron microscope,Fourier transform infrared spectra and contact angle.Cyclic voltammetry and Tafel curves have been used to study its electro-chemical performances.Two identical electrodes in sea water as the electric field sensor will swiftly respond to applied electric field which causes positive and negative ions to move in opposite direction,resulting in a electric potential difference(ΔE).Test result indicates that the offset potential is typically below 1 m V with a drift of 60-170μVd^-1.Typical self noise level is 1.07 nV√Hz^(1/2)@1 Hz.The electric field response indicates that the modified electrode pair shows better response to AC sine signal of amplitude and frequency(5 mV and 1 mHz)respectively than its blank.The electric field response model of the modified electrodes is creatively presented according to its electric double layer capacitance and Faraday pseudo-capacitance.Many advantages of the carbon fiber electric field electrode will make it have potential application prospect.
基金supported by National Natural Science Foundation of China(Nos.52034006,52004229,52225401 and52274231)Regional Innovation Cooperation Project of Sichuan Province(No.2022YFQ0059)+1 种基金Natural Science Foundation of Sichuan Province(No.23NSFSC2099)Science and Technology Strategic Cooperation Project between Nanchong City and Southwest Petroleum University(No.SXHZ004)。
文摘High-voltage electric pulse(HVEP)is an innovative low-energy and high-efficiency technique.However,the underlying physics of the electrical breakdown within the rock,and the coupling mechanism between the various physical fields involved in HVEP still need to be further understood.In this study,we establish a 2D numerical model of multi-physical field coupling of the electrical breakdown of porous rock with randomly distributed pores to investigate the effect of pore characteristics(porosity,pore media composition)on the partial electrical breakdown of rock(i.e.the generation of a plasma channel inside the rock).Our findings indicate that the generation of a plasma channel is directionally selective and extends in the direction of a weak electrical breakdown intensity.As the porosity of the rock increases,so does the intensity of the electric field in the‘electrical damage’region—the greater the porosity,the greater the effectiveness of rock-breaking.As the fraction of pore fluid(S_(water)/S_(air))gradually declines,the generation time of the plasma channel decreases,and the efficacy of rock-breaking by HVEP increases.In addition,in this study,we conducted an indoor experiment utilizing an electric pulse drill to break down the rock in order to recreate the growth mode of the plasma channel in the rock.Moreover,the experimental results are consistent with the simulation results.In addition,the development of this type of partial electrical breakdown is confirmed to be related to electrode polarity and pore characteristics via the experiment of the symmetrical needle-needle electrode arrangement,which further demonstrates the mechanism of partial electrical breakdown.This research is significant for comprehending the process of electric impulse rock-breaking and gives theoretical guidance and technological support for advancing electric impulse drilling technology.
基金supported by the National Key R&D Program of China(2018YFC0809400).
文摘The electrical parameters of the rock and soil are closely related to the physical parameters.By measuring the resistivity and polarizability of rock and soil reasonably,information on physical parameters such as moisture content,pore ratio and compaction degree can be obtained.A system for testing the electrical parameters of soil samples based on the middle step quadrupole method is developed in this article.The system uses a series of copper needles as the electrodes of the soil-mounted test tube,and uses a multi-point multi-layer test method for layered data acquisition,which can solve the problems caused by the capacitance phenomenon and the heterogeneity of the soil sample.At the same time,factors affecting the test results,such as uneven soil preparation and water addition and electrode disturbance,are regarded as noise.A data-analysis method based on median filtering is proposed to process and analyse the test results,and the relationships between resistivity,polarizability,moisture content and compaction degree of the sample are obtained.The results show that the resistivity decreases nonlinearly as moisture content increases,and the correlation with compaction is not strong;the polarizability increases as moisture content increases with fluctuation,and it first increases and then decreases with an increase in compaction.