Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally inte...Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.展开更多
With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual l...With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.展开更多
The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible ...The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.展开更多
In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Impr...In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.展开更多
A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplec...A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.展开更多
The development of regional integrated electric-thermal energy systems(RIETES) is considered a promising direction for modern energy supply systems. These systems provide a significant potential to enhance the compreh...The development of regional integrated electric-thermal energy systems(RIETES) is considered a promising direction for modern energy supply systems. These systems provide a significant potential to enhance the comprehensive utilization and efficient management of energy resources. Therein, the real-time power balance between supply and demand has emerged as one pressing concern for system stability operation. However, current methods focus more on minute-level and hour-level power optimal scheduling methods applied in RIETES. To achieve real-time power balance, this paper proposes one virtual asynchronous machine(VAM) control using heat with large inertia and electricity with fast response speed. First, the coupling timescale model is developed that considers the dynamic response time scales of both electric and thermal energy systems. Second, a real-time power balance strategy based on VAM control can be adopted to the load power variation and enhance the dynamic frequency response. Then, an adaptive inertia control method based on temperature variation is proposed, and the unified expression is further established. In addition, the small-signal stability of the proposed control strategy is validated. Finally, the effectiveness of this control strategy is confirmed through MATLAB/Simulink and HIL(Hardware-in-the-Loop) experiments.展开更多
Denmark’ goal of being independent of fossil energy sources in 2050 puts forward great demands on all energy subsystems (electricity, heat, gas and transport, etc.) to be operated in a holistic manner. The Danish exp...Denmark’ goal of being independent of fossil energy sources in 2050 puts forward great demands on all energy subsystems (electricity, heat, gas and transport, etc.) to be operated in a holistic manner. The Danish experience and challenges of wind power integration and the development of district heating systems are summarized in this paper. How to optimally use the cross-sectoral flexibility by intelligent control (model predictive control-based) of the key coupling components in an integrated heat and power system including electrical heat pumps in the demand side, and thermal storage applications in buildings is investigated.展开更多
Growing consumer interest in distributed Building Integrated Photovoltaic (BIPV) Systems and industry competition to reduce installation costs are stimulating the development of deploying these materials to the reside...Growing consumer interest in distributed Building Integrated Photovoltaic (BIPV) Systems and industry competition to reduce installation costs are stimulating the development of deploying these materials to the residential sector of the building industry. This emerging market continues to attract the attention of many stakeholders, yet cohesive opportunities to deploy in residential sectors, specifically detached single-family dwellings, is scattered. As a result, this study of literature and implementation strategies through simple examples looks to identify several characteristics related to BIPV. Characteristics that were studied in this initial pilot study were design considerations for system selection, applicability to residential construction, and system and material options and enhancements. A case-study home was analyzed demonstrating opportunity for implementation of BIPV on an existing residence. Strategies for maximizing the energy-generating capacity of the system to achieve net-zero energy performance, including all building surfaces and landscaping were also explored. This body of work provides a state-of-the-art review on common materials as well as the more customizable types.展开更多
The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To th...The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.展开更多
A combined approach of thermodynamic analysis and mixed-integer linear programming is presented for performing structural and parameter optimization in the integration of energy system of chemical processes. Tnermodyn...A combined approach of thermodynamic analysis and mixed-integer linear programming is presented for performing structural and parameter optimization in the integration of energy system of chemical processes. Tnermodynamic analysis is used to set up a superstructure configuration of energy system in order to reduce the space of search. The application of the combined approach is illustrated by a revamping integration of a large existing energy system in a refinery complex.展开更多
The paper presents a renovation of thermal system design of a power and heat cogeneration device by utilizing the "Process Energy Integration Method". The new alternative obtains prominent energy saving result.
Seoul has good weather settings for incorporating renewable energies, hence, given its small land area living mode was mostly set in an apartment condition it is an ideal place for building applied photovoltaic (BAPV)...Seoul has good weather settings for incorporating renewable energies, hence, given its small land area living mode was mostly set in an apartment condition it is an ideal place for building applied photovoltaic (BAPV) for solar energy harvesting. On the other hand, the BAPV energy self-consumption hasn’t been thoroughly examined considering the overall energy consumption requirement. Therefore, presented in this communication are the viability of PVL to produce electricity from solar energy and insights on modulating and improving energy harvesting efficiency. To accomplish this objective, three major factors were considered: 1) the photovoltaic (PV) positioning;2) the solar tracking scenario;and 3) the mechanistic system energy consumption. The overall louver energy generation was thoroughly scrutinized from the net energy conception of the BAPV up to the mechanistic module energy expenditure. This work intends to provide insights into the economic feasibility of BAPV assessing its technological profitability in the specified location and building size.展开更多
Integrated power-gas systems(IPGSs)make the power system and natural gas system(NGS)as a whole,and strengthen interdependence between the two systems.Due to bidirectional energy conversion in IPGS,a disturbance may tu...Integrated power-gas systems(IPGSs)make the power system and natural gas system(NGS)as a whole,and strengthen interdependence between the two systems.Due to bidirectional energy conversion in IPGS,a disturbance may turn into a catastrophic outage.Meanwhile,increasing proportion of renewable energy brings challenges to reliability of IPGS.Moreover,partial failure or degradation of system performance leads IPGS operate at multiple performance levels.Therefore,this paper proposes a reliability assessment model of IPGSs which represents multiple performance of components and considers cascading effects,as well as renewable energy uncertainty.First,a framework of IPGS reliability assessment is proposed:multistate models for main elements in the IPGS are represented.Especially a gas-power-generation calculation operator and a power-to-gas calculation operator are utilized to bi-directionally convert a multi-state model between NGS and power systems.Furthermore,nodal reliability indices for IPGS are given to display impacts of cascading effects and renewable energy uncertainty on reliabilities of IPGSs.Numerical results on IPGS test system demonstrate the proposed methods.展开更多
Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategie...Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province.展开更多
In this study,a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems(HRESs)that incorporate a variety of energy sources,while emphasizing the role of artificial neural n...In this study,a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems(HRESs)that incorporate a variety of energy sources,while emphasizing the role of artificial neural networks(ANNs)in system management.For optimal sizing of an HRES,the monthly average method wherein historical weather data are used to calculate the monthly averages of solar irradiance and wind speed,offering a well-balanced strategy for system sizing.This ensures that the HRES is appropriately scaled to meet the actual energy requirements of the specified location,avoiding the pitfalls of over-and under-sizing,and thereby enhancing the operational efficiency.Furthermore,the study details a cutting-edge strategy that employs ANNs for managing the inherent complexities of HRESs.It elaborates on the design,modeling,and control strategies for the HRES components by utilizing Matlab/Simulink for implementation.The findings demonstrate the proficiency of the ANN-based power manager in determining the operational modes guided by a specifically designed flowchart.By integrating ANN-driven energy management strategies into an HRES,the proposed approach marks a significant advancement in system adaptability,precision control,and efficiency,thereby maximizing the effective utilization of renewable resources.展开更多
The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals...The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals and generalized energy integrals are given. The Routh functions and Whittaker functions of Lagrange system are constructed, and the order of differential equations of motion for the system are reduced by using the cyclic integrals or the generalized energy integrals with nabla derivatives. The results show that the reduced Routh equations and Whittaker equations hold the form of Lagrnage equations with nabla derivatives. Finally, two examples are given to illustrate the application of the results.展开更多
A coordinated scheduling model based on two-stage distributionally robust optimization(TSDRO)is proposed for integrated energy systems(IESs)with electricity-hydrogen hybrid energy storage.The scheduling problem of the...A coordinated scheduling model based on two-stage distributionally robust optimization(TSDRO)is proposed for integrated energy systems(IESs)with electricity-hydrogen hybrid energy storage.The scheduling problem of the IES is divided into two stages in the TSDRO-based coordinated scheduling model.The first stage addresses the day-ahead optimal scheduling problem of the IES under deterministic forecasting information,while the sec-ond stage uses a distributionally robust optimization method to determine the intraday rescheduling problem under high-order uncertainties,building upon the results of the first stage.The scheduling model also considers col-laboration among the electricity,thermal,and gas networks,focusing on economic operation and carbon emissions.The flexibility of these networks and the energy gradient utilization of hydrogen units during operation are also incor-porated into the model.To improve computational efficiency,the nonlinear formulations in the TSDRO-based coordinated scheduling model are properly linearized to obtain a Mixed-Integer Linear Programming model.The Column-Constraint Generation(C&CG)algorithm is then employed to decompose the scheduling model into a mas-ter problem and subproblems.Through the iterative solution of the master problem and subproblems,an efficient analysis of the coordinated scheduling model is achieved.Finally,the effectiveness of the proposed TSDRO-based coordinated scheduling model is verified through case studies.The simulation results demonstrate that the proposed TSDRO-based coordinated scheduling model can effectively accomplish the optimal scheduling task while consider-ing the uncertainty and flexibility of the system.Compared with traditional methods,the proposed TSDRO-based coordinated scheduling model can better balance conservativeness and robustness.展开更多
A novel diagram-based representation approach is developed to analyze the thermodynamic efficiency and identify quickly the promising energy-use improvement for integrated fractionating and heat exchange processes in ...A novel diagram-based representation approach is developed to analyze the thermodynamic efficiency and identify quickly the promising energy-use improvement for integrated fractionating and heat exchange processes in delayed coking units. For considering temperature dependence of heat capacity and integrating fractionating and heat exchange processes, an advanced energy level composite curve is constructed by using the simulation results and a stepwise procedure. More accurate results of exergy analysis are obtained and the interaction between different components of the integrated system can be properly revealed in an integrated figure. Then the exergy calculation is performed to validate the performance of processes and to define the targets for improvement. The avoidable exergy destruction is also analyzed by applying the concepts of avoidable and unavoidable exergy destructions for the integrated system. In a case study for a Chinese refinery, the results reveal that the heat exchange between gas oil and deethanization gasoline is the most inefficient process with the highest retrofitting potential, and the lowest exergy efficiency of component in the integration system is only29.4%. The improvement potential and exergy efficiency for the fractionator are 38.1% and 97.3%, respectively.It is obvious that the fractionator is not the most promising component for improvement.展开更多
基金King Saud University for funding this research through the Researchers Supporting Program Number(RSPD2024R704),King Saud University,Riyadh,Saudi Arabia.
文摘Hot dry rock(HDR)is rich in reserve,widely distributed,green,low-carbon,and has broad development potential and prospects.In this paper,a distributionally robust optimization(DRO)scheduling model for a regionally integrated energy system(RIES)considering HDR co-generation is proposed.First,the HDR-enhanced geothermal system(HDR-EGS)is introduced into the RIES.HDR-EGS realizes the thermoelectric decoupling of combined heat and power(CHP)through coordinated operation with the regional power grid and the regional heat grid,which enhances the system wind power(WP)feed-in space.Secondly,peak-hour loads are shifted using price demand response guidance in the context of time-of-day pricing.Finally,the optimization objective is established to minimize the total cost in the RIES scheduling cycle and construct a DRO scheduling model for RIES with HDR-EGS.By simulating a real small-scale RIES,the results show that HDR-EGS can effectively promote WP consumption and reduce the operating cost of the system.
基金supported by the National Natural Science Foundation of China(Grant No.62063016)。
文摘With increasing reforms related to integrated energy systems(IESs),each energy subsystem,as a participant based on bounded rationality,significantly influences the optimal scheduling of the entire IES through mutual learning and imitation.A reasonable multiagent joint operation strategy can help this system meet its low-carbon objectives.This paper proposes a bilayer low-carbon optimal operational strategy for an IES based on the Stackelberg master-slave game and multiagent joint operation.The studied IES includes cogeneration,power-to-gas,and carbon capture systems.Based on the Stackelberg master-slave game theory,sellers are used as leaders in the upper layer to set the prices of electricity and heat,while energy producers,energy storage providers,and load aggregators are used as followers in the lower layer to adjust the operational strategy of the system.An IES bilayer optimization model based on the Stackelberg master-slave game was developed.Finally,the Karush-Kuhn-Tucker(KKT)condition and linear relaxation technology are used to convert the bilayer game model to a single layer.CPLEX,which is a mathematical program solver,is used to solve the equilibrium problem and the carbon emission trading cost of the system when the benefits of each subject reach maximum and to analyze the impact of different carbon emission trading prices and growth rates on the operational strategy of the system.As an experimental demonstration,we simulated an IES coupled with an IEEE 39-node electrical grid system,a six-node heat network system,and a six-node gas network system.The simulation results confirm the effectiveness and feasibility of the proposed model.
文摘The combination of structural health monitoring and vibration control is of great importance to provide components of smart structures.While synthetic algorithms have been proposed,adaptive control that is compatible with changing conditions still needs to be used,and time-varying systems are required to be simultaneously estimated with the application of adaptive control.In this research,the identification of structural time-varying dynamic characteristics and optimized simple adaptive control are integrated.First,reduced variations of physical parameters are estimated online using the multiple forgetting factor recursive least squares(MFRLS)method.Then,the energy from the structural vibration is simultaneously specified to optimize the control force with the identified parameters to be operational.Optimization is also performed based on the probability density function of the energy under the seismic excitation at any time.Finally,the optimal control force is obtained by the simple adaptive control(SAC)algorithm and energy coefficient.A numerical example and benchmark structure are employed to investigate the efficiency of the proposed approach.The simulation results revealed the effectiveness of the integrated online identification and optimal adaptive control in systems.
基金supported by National Key R&D Program of China (No. 2018YFB0905000)Science and Technology Project of SGCC (SGTJDK00DWJS1800232)+1 种基金National Natural Science Foundation of China (51977141)State Grid Corporation of China project: “Research on Construction Technology of Integrated Energy System for Urban Multifunctional Groups” (SGTJJY00GHJS1900040)
文摘In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10672143 and 60575055)the State Key Laboratory of Scientific and Engineering Computing, Chinese Academy of Sciencesthe Natural Science Foundation of Henan Province Government, China (Grant No 0511022200)
文摘A discrete total variation calculus with variable time steps is presented for mechanico-electrical systems where there exist non-potential and dissipative forces. By using this discrete variation calculus, the symplectic-energy-first integrators for mechanico-electrical systems are derived. To do this, the time step adaptation is employed. The discrete variational principle and the Euler-Lagrange equation are derived for the systems. By using this discrete algorithm it is shown that mechanico-electrical systems are not symplectic and their energies are not conserved unless they are Lagrange mechanico-electrical systems. A practical example is presented to illustrate these results.
基金supported by the National Key R&D Program of China (Grant No. 2022YFB3304001)the Major Program of the National Natural Science Foundation of China (Grant No. 52293413)。
文摘The development of regional integrated electric-thermal energy systems(RIETES) is considered a promising direction for modern energy supply systems. These systems provide a significant potential to enhance the comprehensive utilization and efficient management of energy resources. Therein, the real-time power balance between supply and demand has emerged as one pressing concern for system stability operation. However, current methods focus more on minute-level and hour-level power optimal scheduling methods applied in RIETES. To achieve real-time power balance, this paper proposes one virtual asynchronous machine(VAM) control using heat with large inertia and electricity with fast response speed. First, the coupling timescale model is developed that considers the dynamic response time scales of both electric and thermal energy systems. Second, a real-time power balance strategy based on VAM control can be adopted to the load power variation and enhance the dynamic frequency response. Then, an adaptive inertia control method based on temperature variation is proposed, and the unified expression is further established. In addition, the small-signal stability of the proposed control strategy is validated. Finally, the effectiveness of this control strategy is confirmed through MATLAB/Simulink and HIL(Hardware-in-the-Loop) experiments.
基金Danish Agency for Science, Technology and Innovation (No. 6144-00037)Danish InnovationFunding (No. 5185-00005A)
文摘Denmark’ goal of being independent of fossil energy sources in 2050 puts forward great demands on all energy subsystems (electricity, heat, gas and transport, etc.) to be operated in a holistic manner. The Danish experience and challenges of wind power integration and the development of district heating systems are summarized in this paper. How to optimally use the cross-sectoral flexibility by intelligent control (model predictive control-based) of the key coupling components in an integrated heat and power system including electrical heat pumps in the demand side, and thermal storage applications in buildings is investigated.
文摘Growing consumer interest in distributed Building Integrated Photovoltaic (BIPV) Systems and industry competition to reduce installation costs are stimulating the development of deploying these materials to the residential sector of the building industry. This emerging market continues to attract the attention of many stakeholders, yet cohesive opportunities to deploy in residential sectors, specifically detached single-family dwellings, is scattered. As a result, this study of literature and implementation strategies through simple examples looks to identify several characteristics related to BIPV. Characteristics that were studied in this initial pilot study were design considerations for system selection, applicability to residential construction, and system and material options and enhancements. A case-study home was analyzed demonstrating opportunity for implementation of BIPV on an existing residence. Strategies for maximizing the energy-generating capacity of the system to achieve net-zero energy performance, including all building surfaces and landscaping were also explored. This body of work provides a state-of-the-art review on common materials as well as the more customizable types.
基金supported by the National Natural Science Foundation of China(No.12171145)。
文摘The economic operation of integrated energy system(IES)faces new challenges such as multi-timescale characteristics of heterogeneous energy sources,and cooperative operation of hybrid energy storage system(HESS).To this end,this paper investigates the multi-timescale rolling opti-mization problem for IES integrated with HESS.Firstly,the architecture of IES with HESS is established,a comparative analysis is conducted to evaluate the advantages of the HESS over a single energy storage system(SESS)in stabilizing power fluctuations.Secondly,the dayahead and real-time scheduling cost functions of IES are established,the day-ahead scheduling mainly depends on operation costs of the components in IES,the real-time optimal scheduling adopts the Lya-punov optimization method to schedule the battery and hydrogen energy storage in each time slot,so as to minimize the real-time average scheduling operation cost,and the problem of day-ahead and real-time scheduling error,which caused by the uncertainty of the energy storage is solved by online optimization.Finally,the proposed model is verified to reduce the scheduling operation cost and the dispatching error by performing an arithmetic example analysis of the IES in Shanghai,which provides a reference for the safe and stable operation of the IES.
文摘A combined approach of thermodynamic analysis and mixed-integer linear programming is presented for performing structural and parameter optimization in the integration of energy system of chemical processes. Tnermodynamic analysis is used to set up a superstructure configuration of energy system in order to reduce the space of search. The application of the combined approach is illustrated by a revamping integration of a large existing energy system in a refinery complex.
文摘The paper presents a renovation of thermal system design of a power and heat cogeneration device by utilizing the "Process Energy Integration Method". The new alternative obtains prominent energy saving result.
文摘Seoul has good weather settings for incorporating renewable energies, hence, given its small land area living mode was mostly set in an apartment condition it is an ideal place for building applied photovoltaic (BAPV) for solar energy harvesting. On the other hand, the BAPV energy self-consumption hasn’t been thoroughly examined considering the overall energy consumption requirement. Therefore, presented in this communication are the viability of PVL to produce electricity from solar energy and insights on modulating and improving energy harvesting efficiency. To accomplish this objective, three major factors were considered: 1) the photovoltaic (PV) positioning;2) the solar tracking scenario;and 3) the mechanistic system energy consumption. The overall louver energy generation was thoroughly scrutinized from the net energy conception of the BAPV up to the mechanistic module energy expenditure. This work intends to provide insights into the economic feasibility of BAPV assessing its technological profitability in the specified location and building size.
基金supported in part by the Key Projects of National Natural Science Foundation of China under Grant 51936003。
文摘Integrated power-gas systems(IPGSs)make the power system and natural gas system(NGS)as a whole,and strengthen interdependence between the two systems.Due to bidirectional energy conversion in IPGS,a disturbance may turn into a catastrophic outage.Meanwhile,increasing proportion of renewable energy brings challenges to reliability of IPGS.Moreover,partial failure or degradation of system performance leads IPGS operate at multiple performance levels.Therefore,this paper proposes a reliability assessment model of IPGSs which represents multiple performance of components and considers cascading effects,as well as renewable energy uncertainty.First,a framework of IPGS reliability assessment is proposed:multistate models for main elements in the IPGS are represented.Especially a gas-power-generation calculation operator and a power-to-gas calculation operator are utilized to bi-directionally convert a multi-state model between NGS and power systems.Furthermore,nodal reliability indices for IPGS are given to display impacts of cascading effects and renewable energy uncertainty on reliabilities of IPGSs.Numerical results on IPGS test system demonstrate the proposed methods.
基金Supported by Scientific Research Development Fund of Hefei University of Technology (2009HGXJ0174)~~
文摘Taking the planning and major architectural design projects of Anqing Children Welfare Home for example,through the research on categories and each component of solar water heating system,the paper discussed strategies and methods to realize solar energy and architectural integration design in the climate condition and location environment of Anhui Province.
文摘In this study,a comprehensive approach is presented for the sizing and management of hybrid renewable energy systems(HRESs)that incorporate a variety of energy sources,while emphasizing the role of artificial neural networks(ANNs)in system management.For optimal sizing of an HRES,the monthly average method wherein historical weather data are used to calculate the monthly averages of solar irradiance and wind speed,offering a well-balanced strategy for system sizing.This ensures that the HRES is appropriately scaled to meet the actual energy requirements of the specified location,avoiding the pitfalls of over-and under-sizing,and thereby enhancing the operational efficiency.Furthermore,the study details a cutting-edge strategy that employs ANNs for managing the inherent complexities of HRESs.It elaborates on the design,modeling,and control strategies for the HRES components by utilizing Matlab/Simulink for implementation.The findings demonstrate the proficiency of the ANN-based power manager in determining the operational modes guided by a specifically designed flowchart.By integrating ANN-driven energy management strategies into an HRES,the proposed approach marks a significant advancement in system adaptability,precision control,and efficiency,thereby maximizing the effective utilization of renewable resources.
基金supported by the National Natural Science Foundation of China(Grant Nos.11572212 and 11272227)the Innovation Program for Graduate Student of Jiangsu Province,China(Grant No.KYLX16-0414)
文摘The Routh and Whittaker methods of reduction for Lagrange system on time scales with nabla derivatives are studied.The equations of motion for Lagrange system on time scales are established, and their cyclic integrals and generalized energy integrals are given. The Routh functions and Whittaker functions of Lagrange system are constructed, and the order of differential equations of motion for the system are reduced by using the cyclic integrals or the generalized energy integrals with nabla derivatives. The results show that the reduced Routh equations and Whittaker equations hold the form of Lagrnage equations with nabla derivatives. Finally, two examples are given to illustrate the application of the results.
基金supported in part by the National Natural Science Foundation(51977181,52077180)Natural Science Foundation of Sichuan Province(2022NSFSC0027)+2 种基金Fok Ying-Tong Education Foundation of China(171104)14th Five-year Major Science and Technology Research Project of CRRC(2021CXZ021-2)Key research and development project of China National Railway Group Co.,Ltd(N2022J016-B).
文摘A coordinated scheduling model based on two-stage distributionally robust optimization(TSDRO)is proposed for integrated energy systems(IESs)with electricity-hydrogen hybrid energy storage.The scheduling problem of the IES is divided into two stages in the TSDRO-based coordinated scheduling model.The first stage addresses the day-ahead optimal scheduling problem of the IES under deterministic forecasting information,while the sec-ond stage uses a distributionally robust optimization method to determine the intraday rescheduling problem under high-order uncertainties,building upon the results of the first stage.The scheduling model also considers col-laboration among the electricity,thermal,and gas networks,focusing on economic operation and carbon emissions.The flexibility of these networks and the energy gradient utilization of hydrogen units during operation are also incor-porated into the model.To improve computational efficiency,the nonlinear formulations in the TSDRO-based coordinated scheduling model are properly linearized to obtain a Mixed-Integer Linear Programming model.The Column-Constraint Generation(C&CG)algorithm is then employed to decompose the scheduling model into a mas-ter problem and subproblems.Through the iterative solution of the master problem and subproblems,an efficient analysis of the coordinated scheduling model is achieved.Finally,the effectiveness of the proposed TSDRO-based coordinated scheduling model is verified through case studies.The simulation results demonstrate that the proposed TSDRO-based coordinated scheduling model can effectively accomplish the optimal scheduling task while consider-ing the uncertainty and flexibility of the system.Compared with traditional methods,the proposed TSDRO-based coordinated scheduling model can better balance conservativeness and robustness.
基金Supported by the National Natural Science Foundation of China(21473126)the Specialized Research Fund for the Doctoral Program of Higher Education(20124219110002)China Postdoctoral Science Foundation(2015M582285)
文摘A novel diagram-based representation approach is developed to analyze the thermodynamic efficiency and identify quickly the promising energy-use improvement for integrated fractionating and heat exchange processes in delayed coking units. For considering temperature dependence of heat capacity and integrating fractionating and heat exchange processes, an advanced energy level composite curve is constructed by using the simulation results and a stepwise procedure. More accurate results of exergy analysis are obtained and the interaction between different components of the integrated system can be properly revealed in an integrated figure. Then the exergy calculation is performed to validate the performance of processes and to define the targets for improvement. The avoidable exergy destruction is also analyzed by applying the concepts of avoidable and unavoidable exergy destructions for the integrated system. In a case study for a Chinese refinery, the results reveal that the heat exchange between gas oil and deethanization gasoline is the most inefficient process with the highest retrofitting potential, and the lowest exergy efficiency of component in the integration system is only29.4%. The improvement potential and exergy efficiency for the fractionator are 38.1% and 97.3%, respectively.It is obvious that the fractionator is not the most promising component for improvement.