From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovati...From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovation,but has not received sufficient attention.In this paper,we give an overview and perspective on machine learning paradigms.First,we propose a paradigm taxonomy with three levels and seven dimensions from a knowledge perspective.Accordingly,we give an overview on three basic and twelve extended learning paradigms,such as Ensemble Learning,Transfer Learning,etc.,with figures in unified style.We further analyze three advanced paradigms,i.e.,AlphaGo,AlphaFold and ChatGPT.Second,to enable more efficient and effective scientific discovery,we propose to build a new ecosystem that drives AI paradigm shifts through the decentralized science(DeSci)movement based on decentralized autonomous organization(DAO).To this end,we design the Hanoi framework,which integrates human factors,parallel intelligence based on a combination of artificial systems and the natural world,and the DAO to inspire AI innovations.展开更多
为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量...为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量过程中结合覆盖树数据集获得新的漂移向量结果KnnShift,在不同数据密度分布的数据集上都能自适应产生带宽参数,所有数据点完成漂移过程后获得聚类结果。实验结果表明,MSCT算法的聚类效果整体上优于MS、DBSCAN等算法。展开更多
基金This work was supported by the National Key Research and Development Program of China(2020YFB2104001)the National Natural Science Foundation of China(62271485,61903363,U1811463)Open Project of the State Key Laboratory for Management and Control of Complex Systems(20220117).
文摘From AlphaGo to ChatGPT,the field of AI has launched a series of remarkable achievements in recent years.Analyzing,comparing,and summarizing these achievements at the paradigm level is important for future AI innovation,but has not received sufficient attention.In this paper,we give an overview and perspective on machine learning paradigms.First,we propose a paradigm taxonomy with three levels and seven dimensions from a knowledge perspective.Accordingly,we give an overview on three basic and twelve extended learning paradigms,such as Ensemble Learning,Transfer Learning,etc.,with figures in unified style.We further analyze three advanced paradigms,i.e.,AlphaGo,AlphaFold and ChatGPT.Second,to enable more efficient and effective scientific discovery,we propose to build a new ecosystem that drives AI paradigm shifts through the decentralized science(DeSci)movement based on decentralized autonomous organization(DAO).To this end,we design the Hanoi framework,which integrates human factors,parallel intelligence based on a combination of artificial systems and the natural world,and the DAO to inspire AI innovations.
文摘为解决均值漂移聚类算法聚类效果依赖于带宽参数的主观选取,以及处理密度变化大的数据集时聚类结果精确度问题,提出一种基于覆盖树的自适应均值漂移聚类算法MSCT(MeanShift based on Cover-Tree)。构建一个覆盖树数据集,在计算漂移向量过程中结合覆盖树数据集获得新的漂移向量结果KnnShift,在不同数据密度分布的数据集上都能自适应产生带宽参数,所有数据点完成漂移过程后获得聚类结果。实验结果表明,MSCT算法的聚类效果整体上优于MS、DBSCAN等算法。