The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb...The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis.展开更多
The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious.To improve agglomeration effectiveness of fine particles,a dual zone electr...The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious.To improve agglomeration effectiveness of fine particles,a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed.The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0μm under applied AC electric field.An optimal condition for achieving better agglomeration effectiveness was found to be as follows:flue gas flow velocity of3.00 m/s,particle concentration of 2.00 g/m^3,output voltage of 35 kV and length of the barb of16 ram.In addition,4.0-6.0μm particles haste the best effectiveness with the variation of particle volume occupancy of-3.2.展开更多
基金Project supported by the National High Technology Research and Development Program of China(Grant No.2004AA52930)the Fundamental Research Funds for the Central Universities(Grant No.2014JBM109)
文摘The charge quantity of small particulates such as PM2.5 plays a key role in the collection efficiency of an electrostatic precipitator(ESP). Under a single electrostatic voltage, it is difficult to charge and absorb small particulates. A new method of superimposing an alternative voltage on the electrostatic voltage is provided in this paper. Characteristics of small particulates are analyzed under alternative and electrostatic voltages. It is demonstrated that an alternative voltage can significantly improve the collection efficiency in three aspects: preventing anti-corona, increasing the charge quantity of small particulates, and increasing the median particulate size by electric agglomeration. In addition, practical usage with the superposition of alternative voltage is provided, and the results are in agreement with the theoretical analysis.
基金supported by the Key Technology R&D Program of Hebei,China(No.13211207D)
文摘The development of an efficient technology for removing fine particles in flue gas is essential as the haze is becoming more and more serious.To improve agglomeration effectiveness of fine particles,a dual zone electric agglomeration device consisting of a charging chamber and an agglomeration chamber with bipolar barb electrodes was developed.The bipolar barb electric agglomerator with a polar distance of 200 mm demonstrates good agglomeration effectiveness for particles with a size less than 8.0μm under applied AC electric field.An optimal condition for achieving better agglomeration effectiveness was found to be as follows:flue gas flow velocity of3.00 m/s,particle concentration of 2.00 g/m^3,output voltage of 35 kV and length of the barb of16 ram.In addition,4.0-6.0μm particles haste the best effectiveness with the variation of particle volume occupancy of-3.2.