The environmental impact of greenhouse gases based on natural gas flaring influences the rate of gas recovery around the world. In the Republic of Congo, the natural gas reserve in 2019 is estimated at 90 billion cubi...The environmental impact of greenhouse gases based on natural gas flaring influences the rate of gas recovery around the world. In the Republic of Congo, the natural gas reserve in 2019 is estimated at 90 billion cubic meters (BCM). In this study, from the Congolese gas reserve we used five gas turbines with a capacity of 150 MW each;these five turbines consume 1.69 billion cubic meters (BCM)/year for the power of 273.750 MW and consumption of 6.57 billion kilowatt-hours. The results of this study revealed that an investment capital of 192,305,137 euros was required with a net profit of 9,581,250 euros at an annual rate of return of 4.98% with an investment payback period of approximately 20 years. This will allow the Congolese government to accomplish its policy of valuing gas and developing the country;the electricity produced by the National Petroleum Company of Congo (SNPC) will be sold to the Electrical Energy of Congo (E<sup>2</sup>C) at 0.06 euro/kWh.展开更多
Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant...Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent.展开更多
Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive...Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.展开更多
The quantities of gas released into the environment during the extraction and processing of crude oil,by flaring,constitute a vast source of mineral wealth which can be used to produce other useful products.The proces...The quantities of gas released into the environment during the extraction and processing of crude oil,by flaring,constitute a vast source of mineral wealth which can be used to produce other useful products.The processes studied in this paper,as alternatives to the above problem,are the ones used in Shell Pearl Qatar project and Oryx GTL project.Both projects produce liquid fuels,mainly naphtha and diesel,in addition to more special fuel such as kerosene.This paper is a feasibility study of a project that makes use of the flare gas from the State of Texas,U.S.A.,as a feedstock to a process similar to either Shell Pearl Qatar project,or Oryx GTL project.The objective of this study is to determine the price range for crude oil over which an investment to similar projects can be profitable.An MS Excel Model was developed in order to perform calculations having as a variable the crude oil price and taking into account all the process and project’s financial data.The results of this model showed that a project similar to Shell Pearl Qatar remains profitable in crude oil price above$57.76/barrel,while a project similar to Oryx GTL remains viable for crude oil price over$31.4/bbl.In the price range$55-$60/barrel,the payout of the corresponding to Shell Pearl Qatar project will be in about 15.2 years and 3.3 years for a project similar to Oryx GTL.Finally,using the financial principles of this study we can apply them to any process in order to determine under what conditions will remain viable.展开更多
Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)tech...Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)technologies.The current work,initially,presents a detailed energy flow model for the integrated power and natural gas system in light of the P2G and CHP technologies.Considering the simultaneous load flow of networks,a contingency analysis procedure is proposed,and reliability is assessed through sequential Monte Carlo simulations.The current study examines the effect of independent and dependent operation of energy networks on the reliability of the systems.In particular,the effect of employing both P2G and CHP technologies on reliability criteria is evaluated.In addition,a series of sensitivity analysis are performed on the size and site of these technologies to investigate their effects on system reliability.The proposed method is implemented on an integrated IEEE 24-bus electrical power system and 20-node Belgian natural gas system.The simulation procedure certifies the proposed method for reliability assessment is practical and applicable.In addition,the results prove connection between energy networks through P2G and CHP technologies can improve reliability of networks if the site and size of technologies are properly determined.展开更多
This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development ...This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development in Chinacoal industry, progress and perspective of clean coal power generation technology in China, as well as application andmarket of flue gas desulphurization technology in coal-fired power plants.[展开更多
介绍一种新型深冷液化空气储能发电(LAES)系统,对比了新型深冷液化空气储能系统与传统压缩空气储能系统(CAES)的优缺点。以500 k W级LAES系统为例,简要介绍了其工艺流程、重要节点参数及关键设备的选型。最后对该系统后续工程化应用等...介绍一种新型深冷液化空气储能发电(LAES)系统,对比了新型深冷液化空气储能系统与传统压缩空气储能系统(CAES)的优缺点。以500 k W级LAES系统为例,简要介绍了其工艺流程、重要节点参数及关键设备的选型。最后对该系统后续工程化应用等方面面临的问题进行了总结。展开更多
满足化学品船标准的运输船是世界造船业公认的高技术、高附加值船型,从设计到施工建造,相关法规和规范标准都极其严苛,而化学品船的核心设计在于其液货系统。该文以某型55 000 t IMO Ⅱ型化学品船为例,介绍并分析其液货装卸系统的设备...满足化学品船标准的运输船是世界造船业公认的高技术、高附加值船型,从设计到施工建造,相关法规和规范标准都极其严苛,而化学品船的核心设计在于其液货系统。该文以某型55 000 t IMO Ⅱ型化学品船为例,介绍并分析其液货装卸系统的设备选型、深井泵结构特点以及系统布置,相关设计满足IBC CODE、MARPOL、OCIMF的要求。此外,由于电动深井泵的结构特点,其安装精度直接影响到泵的工作情况甚至整个液货系统的可靠性。文中从深井泵基座和固定支架的设计、吸入井的设计及制作安装工艺以及深井泵现场安装工艺程序等方面,对Marflex电动深井泵的安装进行研究和介绍。展开更多
文摘The environmental impact of greenhouse gases based on natural gas flaring influences the rate of gas recovery around the world. In the Republic of Congo, the natural gas reserve in 2019 is estimated at 90 billion cubic meters (BCM). In this study, from the Congolese gas reserve we used five gas turbines with a capacity of 150 MW each;these five turbines consume 1.69 billion cubic meters (BCM)/year for the power of 273.750 MW and consumption of 6.57 billion kilowatt-hours. The results of this study revealed that an investment capital of 192,305,137 euros was required with a net profit of 9,581,250 euros at an annual rate of return of 4.98% with an investment payback period of approximately 20 years. This will allow the Congolese government to accomplish its policy of valuing gas and developing the country;the electricity produced by the National Petroleum Company of Congo (SNPC) will be sold to the Electrical Energy of Congo (E<sup>2</sup>C) at 0.06 euro/kWh.
基金supported by the National Natural Science Foundation of China (No. 52176097)。
文摘Hydrazine is toxic and carcinogenic, which greatly increases the difficulty of application and no longer meets the needs of green aerospace. As a green propellant, the Ammonium Dinitramide(ADN)-based liquid propellant has the advantages of higher specific impulse, being non-toxic,pollution-free, and easy storage. However, an ADN-based space engine in orbit has exposed the problems of high-temperature deactivation of catalysts and cold-start failure. An active ignition technology—electric ignition technology was explored in this paper to break through the technical bottleneck of catalyst deactivation and the inability to a cold start. An experimental system of a constant-volume combustor for the ADN-based liquid propellant based on the electric ignition method was established. The electric ignition and combustion characteristics of the ADN-based liquid propellant in a volume combustor with an electric ignition method were studied. The influencing mechanisms of the ignition voltage and the electrode structure on the electric ignition characteristics of the ADN-based liquid propellant were investigated. An elevation of the ignition voltage could facilitate the ignition process of the ADN-based liquid propellant, curtail electric energy input and heating effect, while exerting an adverse impact on the combustion process of the propellant.An increase in the ignition voltage enhanced the ignition process of the propellant while simultaneously suppressing its combustion process when utilizing mesh electrodes. Compared to the strip electrodes, the mesh electrodes increased the contact area between the electrodes and the propellant,increased the electric energy input power in the electric ignition process, and reduced the ignition delay time. The mesh electrodes could promote the combustion process of the propellant to a certain extent.
基金jointly supported by the Science Foundation of the Institute of Plasma Physics, the Chinese Academy of Sciences (No. DSJJ-14-YY02)National Natural Science Foundation of China (Grant Nos. 11475174 and 51777206)
文摘Atmospheric pressure helium/water dielectric barrier discharge(DBD) plasma is used to investigate the generation of reactive species in a gas–liquid interface and in a liquid. The emission intensity of the reactive species is measured by optical emission spectroscopy(OES)with different discharge powers at the gas–liquid interface. Spectrophotometry is used to analyze the reactive species induced by the plasma in the liquid. The concentration of OH radicals reaches 2.2 μm after 3 min of discharge treatment. In addition, the concentration of primary longlived reactive species such as H;O;, NO;and O;are measured based on plasma treatment time.After 5 min of discharge treatment, the concentration of H;O;, NO;, and O;increased from 0 mg?·?L;to 96 mg?·?L;, 19.5 mg?·?L;, and 3.5 mg?·?L;, respectively. The water treated by plasma still contained a considerable concentration of reactive species after 6 h of storage. The results will contribute to optimizing the DBD plasma system for biological decontamination.
文摘The quantities of gas released into the environment during the extraction and processing of crude oil,by flaring,constitute a vast source of mineral wealth which can be used to produce other useful products.The processes studied in this paper,as alternatives to the above problem,are the ones used in Shell Pearl Qatar project and Oryx GTL project.Both projects produce liquid fuels,mainly naphtha and diesel,in addition to more special fuel such as kerosene.This paper is a feasibility study of a project that makes use of the flare gas from the State of Texas,U.S.A.,as a feedstock to a process similar to either Shell Pearl Qatar project,or Oryx GTL project.The objective of this study is to determine the price range for crude oil over which an investment to similar projects can be profitable.An MS Excel Model was developed in order to perform calculations having as a variable the crude oil price and taking into account all the process and project’s financial data.The results of this model showed that a project similar to Shell Pearl Qatar remains profitable in crude oil price above$57.76/barrel,while a project similar to Oryx GTL remains viable for crude oil price over$31.4/bbl.In the price range$55-$60/barrel,the payout of the corresponding to Shell Pearl Qatar project will be in about 15.2 years and 3.3 years for a project similar to Oryx GTL.Finally,using the financial principles of this study we can apply them to any process in order to determine under what conditions will remain viable.
文摘Assessing the reliability of integrated electricity and gas systems has become an important issue due to the strong dependence of these energy networks through the power-to-gas(P2G)and combined heat and power(CHP)technologies.The current work,initially,presents a detailed energy flow model for the integrated power and natural gas system in light of the P2G and CHP technologies.Considering the simultaneous load flow of networks,a contingency analysis procedure is proposed,and reliability is assessed through sequential Monte Carlo simulations.The current study examines the effect of independent and dependent operation of energy networks on the reliability of the systems.In particular,the effect of employing both P2G and CHP technologies on reliability criteria is evaluated.In addition,a series of sensitivity analysis are performed on the size and site of these technologies to investigate their effects on system reliability.The proposed method is implemented on an integrated IEEE 24-bus electrical power system and 20-node Belgian natural gas system.The simulation procedure certifies the proposed method for reliability assessment is practical and applicable.In addition,the results prove connection between energy networks through P2G and CHP technologies can improve reliability of networks if the site and size of technologies are properly determined.
文摘This paper briefs the current clean production and consumption levels of coal in China and the pollution harmbrought to the atmospheric environment, present status and orientation of clean coal technology development in Chinacoal industry, progress and perspective of clean coal power generation technology in China, as well as application andmarket of flue gas desulphurization technology in coal-fired power plants.[