Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configur...Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configurations agree well with the experimentally determined structures. SnPc molecule energetically prefers to adsorb on Ag(111) surface with Sn-down conformation. The energy required to move the central Sn atom through the frame of a phthalocyanine molecule, switching from the Sn-up to Sn-down conformation, is about 1.68 eV. The simulated scanning tunneling microscopy images reproduce the main features of experimental observations. Moreover, the experimentally proposed hole attachment mechanism is verified based on the calculated density of states of SnPc on Ag(111) with three different adsorption configurations.展开更多
An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wav...An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.展开更多
ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, ph...ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, photolu- minescence and electrical resistivity measurements, respectively. The results show that the UV emission is at a constant peak position in the photoluminescence spectra. Meanwhile, their electrical resistivity decreases to very low level approaching to the value of the CdO film, which can be explained by the Matthiessen composite rule for resistivity. The peculiarity of low resistivity and high transnlittance in the visible region enables these Rims suitable for optoelectronic device fabrication.展开更多
We present the design of a dual-band left-handed metamaterial with fishnet structure in the terahertz regime. Its left-handed properties are described by the retrieved effective electromagnetic parameters. We introduc...We present the design of a dual-band left-handed metamaterial with fishnet structure in the terahertz regime. Its left-handed properties are described by the retrieved effective electromagnetic parameters. We introduce an equivalent circuit which offers a theoretical explanation for the left-handed behavior of the dual-band fishnet metamaterial, and investigate its losses receiving- higher figure of mcrit, The design is beneficial to the development of frequency agile and broadband THz materials and devices'. The dual-band fishnet metamaterial can be extended to infrared and optical frequency ranges by regulating the structural parameters.展开更多
The structure and magnetic phase transitions of the Gd2Fe17 compound are investigated by using a differential thermal/thermogravimetric analyzer, x-ray diffraction, and magnetization measurements. The result shows tha...The structure and magnetic phase transitions of the Gd2Fe17 compound are investigated by using a differential thermal/thermogravimetric analyzer, x-ray diffraction, and magnetization measurements. The result shows that there are two phase structures for the Gd2Fe17 compound: the hexagonal Th2Nilr-type structure at high temperatures (above 1243℃), and the rhombohedral Th2Zn17-type structure, respectively. A method to measure the magnetic moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound is presented. The moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound from 77 to 500 K are measured in this way with a vibrating sample magnetometer. A detailed discussion is presented.展开更多
The existence of shear horizontal surface waves in a magneto-electro-elastic (MEE) half-space with hexagonal (6mm) symmetry is investigated. The surface of the MEE half-space is mechanically free, but subjected to...The existence of shear horizontal surface waves in a magneto-electro-elastic (MEE) half-space with hexagonal (6mm) symmetry is investigated. The surface of the MEE half-space is mechanically free, but subjected to four types of electromagnetic boundary conditions. These boundary conditions are electrically open/magnetically closed, electrically open/magnetically open, electrically closed/magnetically open and electrically closed/magnetically dosed. It is shown that except for the electrically open/magnetically closed condition, the three other sets of electromagnetic boundary conditions allow the propagation of shear horizontal surface waves.展开更多
An electrical pulse induced resistance switching effect in ZnO/Nb-doped SrTiO3 heterojunctions is reported. The current-voltage curves of these junctions show hysteresis. Multi-resistance states are realized by applyi...An electrical pulse induced resistance switching effect in ZnO/Nb-doped SrTiO3 heterojunctions is reported. The current-voltage curves of these junctions show hysteresis. Multi-resistance states are realized by applying voltage pulses with different amplitudes, and the resistance switching effect is more remarkable at low temperatures. The junction capacitance decreases dramatically with increasing frequency. Analysis of the results suggests that the trapping-detrapping process plays an important role in the resistance switching effect.展开更多
We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities i...We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.展开更多
Light intensity distribution in the vicinity of inclusions and etched cracks in polished fused silica at wavelength scale are simulated by using the finite-difference time-domain algorithm. Light intensity enhancement...Light intensity distribution in the vicinity of inclusions and etched cracks in polished fused silica at wavelength scale are simulated by using the finite-difference time-domain algorithm. Light intensity enhancement factor as functions of diameter and refractive index of inclusions are investigated, more than 10 times that of incident beam is obtained in the simulation. We model the etched crack in close proximity to a real structure, which is characterized by AFM. We find that the peak light intensity of the crack is a function of its cross sectional breadth depth ratio, providing good hints for the effective processing of fused silica samples to improve the damage threshold.展开更多
Magnetic composites of carbon nanotubes (CNTs) are synthesized by the in situ catalytic decomposition of benzene at temperatures as low as 400℃ over Fe nanoparticles (mean grain size = 26 nm) produced by sol-gel ...Magnetic composites of carbon nanotubes (CNTs) are synthesized by the in situ catalytic decomposition of benzene at temperatures as low as 400℃ over Fe nanoparticles (mean grain size = 26 nm) produced by sol-gel fabrication and hydrogen reduction. The yield of CNT composite is up to about 3025% in a run of 6 h. FE- SEM and HRTEM investigations reveal that one-dimensional carbon species are produced in a large quantity. A relatively high value of magnetization is observed for the composite due to the encapsulation of ferromagnetic Fe3 C and/or α-Fe. The method is suitable for the mass-production of CNT composites that contain magnetic nanoparticles.展开更多
The classic anisotropic spherical cloak can be mimicked by many alternating thin layers of isotropic metamaterials [Qiu et al. Phys. Rev. E 79 (2009) 047602]. We propose an improved method of designing permittivity ...The classic anisotropic spherical cloak can be mimicked by many alternating thin layers of isotropic metamaterials [Qiu et al. Phys. Rev. E 79 (2009) 047602]. We propose an improved method of designing permittivity and permeability in each isotropic layer, which eliminates the jumping of the refractive index at the interface. Multilayered spherical cloaks designed by the present method perform much better than those by Qiu et al., especially for forward scattering. It is found that the ratio of layer thickness to the operating wavelength plays an important role in achieving invisibility. The presented cloak should be discretized to at least 40 layers to meet the thickness threshold corresponding to 10% scattering.展开更多
Ce3+/Eu2+ codoped LiSrBO3 phosphor is synthesized, and its luminescent characteristics are investigated. LiSrBO3:Ce3+,Eu2+ phosphor exhibits varied hues from blue to white and eventually to yellow by resonance-ty...Ce3+/Eu2+ codoped LiSrBO3 phosphor is synthesized, and its luminescent characteristics are investigated. LiSrBO3:Ce3+,Eu2+ phosphor exhibits varied hues from blue to white and eventually to yellow by resonance-type energy transfer from Ce3+ ion to Eu2+ ion and tuning the relative proportion of Ce3+/Eu2+ properly. Energy transfer mechanism in LiSrBOa:Ce3+, Eu2+ phosphor is dominated by the dipole-dipole interaction, and the critical distance of the energy transfer is estimated to be about 2 nm by both spectral overlap and concentration quenching methods. Under UV radiation, white light is generated by coupling 436 and 565nm emission bands attributed to Ce3+ and Eu2+ radiations, respectively.展开更多
The double-scale lead zirconate titanate (PZT) piezoelectric ceramics were prepared by the solid state processing with PZT nano-crystalline and micro-powder. The microstructures, electrical and mechanical properties...The double-scale lead zirconate titanate (PZT) piezoelectric ceramics were prepared by the solid state processing with PZT nano-crystalline and micro-powder. The microstructures, electrical and mechanical properties of the double-scale PZT are investigated. All the sintered ceramics exhibit a single perovskite structure and the grain size of the dou ble-scale PZT reduces due to the incorporation of PZT nano-crystalline. Compared to normal PZT, the mechanical properties increase significantly and the piezoelectric properties decrease slightly. Mechanisms responsible for the reinforcement of the double-scale PZT are discussed.展开更多
Copper indium diselenide (CuInSe2) thin films were prepared by ion beam sputtering Cu, In and Se targets continuously on BK7 glass substrates and the three-layer film was then annealed in the same vacuum chamber. X-...Copper indium diselenide (CuInSe2) thin films were prepared by ion beam sputtering Cu, In and Se targets continuously on BK7 glass substrates and the three-layer film was then annealed in the same vacuum chamber. X-ray diffraction shows that the CuInSe2 thin films have a single chalcopyrite structure with preferential (112) orientation. Scanning electron microscopy reveals that the CIS thin films consist of uniform and densely packed grain clusters. Energy dispersive x-ray spectroscopy demonstrates that the elemental composition of CIS films approaches the stochiometric composition ratios of 1:1:2. Raman measurement shows that the main peak is at about 174cm^-1 and this peak is identified as the A1 vibrational mode from chaicopyrite ordered CulnSe2. Optical transmission and absorption spectroscopy measurement reveal an energy band gap of about 1.05 eV and an absorption coefficient of 10^5 cm^-1. The film resistivity is about 0.01 Ωcm.展开更多
We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (...We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The firstprinciples computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.展开更多
Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of sil...Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization.展开更多
The La2Ti2O7:Pr^3+, which emits red color luminescence upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated. X-...The La2Ti2O7:Pr^3+, which emits red color luminescence upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated. X-ray diffraction, photoluminescence, afterglow emission spectra and long-lasting phosphorescence (LLP) decay curves are used to characterize this phosphor. After irradiation by a 290-nm UV light for 3 rain, the Pr^3+-doped La2Ti2O7 phosphor emits intense red emitting afterglow from the ^1D2 →^ 3H4 transitions, and its afterglow can be seen with the naked eye in the dark clearly for more than 1 h after removal of the excitation source. The afterglow decay curve of the Pr^3+-doped La2Ti2O7 phosphor contains a fast decay component and another slow decay one. The possible mechanism of this red light emitting LLP phosphor is also discussed based on the experimental results.展开更多
Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous s...Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.展开更多
The influence of ZnO microstructure on electrical barriers is investigated using capacitance-voltage (C - V), current-voltage (I- V) and deep level transient spectroscopy (DLTS) measurements. A deep level center...The influence of ZnO microstructure on electrical barriers is investigated using capacitance-voltage (C - V), current-voltage (I- V) and deep level transient spectroscopy (DLTS) measurements. A deep level center located at Ec - 0.24 eV obtained by DLTS in the ZnO films is an intrinsic defect related to Zni. The surface states in the ZnO grains that have acceptor behavior of capturing electrons from Zni defects result in the formation of grain barriers. In addition, we find that the current transport is dominated by grain barriers after annealing at 600℃ at 02 ambient. With the increment of the annealing temperature, the current transport mechanism of ZnO/Si heterostructure is mainly dominated by thermo-emission.展开更多
An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emittin...An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emitting layer. A maximum power efficiency Tlp of 6.621m/W and current efficiency of 14.78 cd/A at 745 cd/m2 are obtained from the device. The roll-off percentage of ηp of the pure phosphorescent phosphor layer device is reduced to 5% at a current density of 20mA/cm2, which is about 11% for conventional phosphorescent devices. The low roll-off efficiency is attributed to the phosphorescent material, which has the molecular structure of a strong steric hindrance effect.展开更多
文摘Adsorption behavior and electronic structure of tin-phthalocyanine (SnPc) on Ag(111) surface with Sn-up and Sn-down conformations are investigated using first-principles calculations. Two predicted adsorption configurations agree well with the experimentally determined structures. SnPc molecule energetically prefers to adsorb on Ag(111) surface with Sn-down conformation. The energy required to move the central Sn atom through the frame of a phthalocyanine molecule, switching from the Sn-up to Sn-down conformation, is about 1.68 eV. The simulated scanning tunneling microscopy images reproduce the main features of experimental observations. Moreover, the experimentally proposed hole attachment mechanism is verified based on the calculated density of states of SnPc on Ag(111) with three different adsorption configurations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50771090 and 50821001, the National Basic Research Program of China under Grant No 2005CB724404, the Program for Changjiang Scholars and Innovative Team under Grant No IRT0650, and the Doctoral Foundation of Hebei Normal University of Science and Technology under Grant No 2008YB001.
文摘An investigation of structural stabilities, electronic and optical properties of SrF2 under high pressure is conducted using a first-principles calculation based on density functional theory (DFT) with the plane wave basis set as implemented in the CASTEP code. Our results predict that the second high-pressure phase of SrF2 is of a Ni2In- type structure, and demonstrate that the sequence of the pressure-induced phase transition of SrF2 is the fluorite structure (Fm3m) to the PbC12-type structure (Pnma), and to the Ni2In-type phase (P63/mmc). The first and second phase transition pressures are 5. 77 and 45.58 GPa, respectively. The energy gap increases initially with pressure in the Fm3m, and begins to decrease in the Pnma phases at 30 GPa. The band gap overlap metallization does not occur up to 210 GPa. The pressure effect on the optical properties is discussed.
基金Supported by the National Nature Science Foundation under Grant No 50871046, the National Basic Research Program of China under Grant No 2010CB631001, and the Program for Changjiang Scholars and Innovative Research Team in University.
文摘ZnO/CdO composite films with different CdO contents are obtained by pulse laser deposition technique. The structural, optical and electrical properties of the composite [liras are investigated by x-ray diffraction, photolu- minescence and electrical resistivity measurements, respectively. The results show that the UV emission is at a constant peak position in the photoluminescence spectra. Meanwhile, their electrical resistivity decreases to very low level approaching to the value of the CdO film, which can be explained by the Matthiessen composite rule for resistivity. The peculiarity of low resistivity and high transnlittance in the visible region enables these Rims suitable for optoelectronic device fabrication.
基金Supported by the National Natural Science Foundation of China under Grant No 10974063, the Research Foundation of Wuhan National Laboratory under Grant No P080008, and the National Basic Research Program of China under Grant No 2007CB310403.
文摘We present the design of a dual-band left-handed metamaterial with fishnet structure in the terahertz regime. Its left-handed properties are described by the retrieved effective electromagnetic parameters. We introduce an equivalent circuit which offers a theoretical explanation for the left-handed behavior of the dual-band fishnet metamaterial, and investigate its losses receiving- higher figure of mcrit, The design is beneficial to the development of frequency agile and broadband THz materials and devices'. The dual-band fishnet metamaterial can be extended to infrared and optical frequency ranges by regulating the structural parameters.
基金Supported by the National Natural Science Foundation of China under Grant No 50871074, and Tianjin University of Science and Technology under Grant No 0200153.
文摘The structure and magnetic phase transitions of the Gd2Fe17 compound are investigated by using a differential thermal/thermogravimetric analyzer, x-ray diffraction, and magnetization measurements. The result shows that there are two phase structures for the Gd2Fe17 compound: the hexagonal Th2Nilr-type structure at high temperatures (above 1243℃), and the rhombohedral Th2Zn17-type structure, respectively. A method to measure the magnetic moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound is presented. The moments of the Gd-sublattice and the Fe-sublattice in the Gd2Fe17 compound from 77 to 500 K are measured in this way with a vibrating sample magnetometer. A detailed discussion is presented.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10672108 and 10472074.
文摘The existence of shear horizontal surface waves in a magneto-electro-elastic (MEE) half-space with hexagonal (6mm) symmetry is investigated. The surface of the MEE half-space is mechanically free, but subjected to four types of electromagnetic boundary conditions. These boundary conditions are electrically open/magnetically closed, electrically open/magnetically open, electrically closed/magnetically open and electrically closed/magnetically dosed. It is shown that except for the electrically open/magnetically closed condition, the three other sets of electromagnetic boundary conditions allow the propagation of shear horizontal surface waves.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50425205 and 10674079, and the National Basic Research Program of China under Grant No 2006CB921502.
文摘An electrical pulse induced resistance switching effect in ZnO/Nb-doped SrTiO3 heterojunctions is reported. The current-voltage curves of these junctions show hysteresis. Multi-resistance states are realized by applying voltage pulses with different amplitudes, and the resistance switching effect is more remarkable at low temperatures. The junction capacitance decreases dramatically with increasing frequency. Analysis of the results suggests that the trapping-detrapping process plays an important role in the resistance switching effect.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774001, 60736033, 60776041 and 60876041, and National Basic Research Program of China under Grant Nos 2006CB604908 and 2006CB921607, and the National Key Basic R&D Plan of China under Grant Nos TG2007CB307004.
文摘We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.
文摘Light intensity distribution in the vicinity of inclusions and etched cracks in polished fused silica at wavelength scale are simulated by using the finite-difference time-domain algorithm. Light intensity enhancement factor as functions of diameter and refractive index of inclusions are investigated, more than 10 times that of incident beam is obtained in the simulation. We model the etched crack in close proximity to a real structure, which is characterized by AFM. We find that the peak light intensity of the crack is a function of its cross sectional breadth depth ratio, providing good hints for the effective processing of fused silica samples to improve the damage threshold.
基金Supported by the National Natural Science Foundation of China under Grant No 10674059, the National High Technology Research and Development Program of China under Grant No 2007AA021805, and the National Basic Research Program of China under Grant No 2005CB623605.
文摘Magnetic composites of carbon nanotubes (CNTs) are synthesized by the in situ catalytic decomposition of benzene at temperatures as low as 400℃ over Fe nanoparticles (mean grain size = 26 nm) produced by sol-gel fabrication and hydrogen reduction. The yield of CNT composite is up to about 3025% in a run of 6 h. FE- SEM and HRTEM investigations reveal that one-dimensional carbon species are produced in a large quantity. A relatively high value of magnetization is observed for the composite due to the encapsulation of ferromagnetic Fe3 C and/or α-Fe. The method is suitable for the mass-production of CNT composites that contain magnetic nanoparticles.
基金Support by National Natural Science Foundation of China under Grant Nos 90816025, 10632060 and 10640150395, the National Basic Research Program of China under Grant No 2006CB601202, and thc Fund of State Key Laboratory of Explosion Science and Technology (KFJJ08-15).
文摘The classic anisotropic spherical cloak can be mimicked by many alternating thin layers of isotropic metamaterials [Qiu et al. Phys. Rev. E 79 (2009) 047602]. We propose an improved method of designing permittivity and permeability in each isotropic layer, which eliminates the jumping of the refractive index at the interface. Multilayered spherical cloaks designed by the present method perform much better than those by Qiu et al., especially for forward scattering. It is found that the ratio of layer thickness to the operating wavelength plays an important role in achieving invisibility. The presented cloak should be discretized to at least 40 layers to meet the thickness threshold corresponding to 10% scattering.
基金Supported by the National Natural Science Foundation of China under Grant No 50902042, the Natural Science Foundation of Hebei Province under Grant No E2009000209, and the Education Office Foundation of Hebei Province under Grant No 2009313.
文摘Ce3+/Eu2+ codoped LiSrBO3 phosphor is synthesized, and its luminescent characteristics are investigated. LiSrBO3:Ce3+,Eu2+ phosphor exhibits varied hues from blue to white and eventually to yellow by resonance-type energy transfer from Ce3+ ion to Eu2+ ion and tuning the relative proportion of Ce3+/Eu2+ properly. Energy transfer mechanism in LiSrBOa:Ce3+, Eu2+ phosphor is dominated by the dipole-dipole interaction, and the critical distance of the energy transfer is estimated to be about 2 nm by both spectral overlap and concentration quenching methods. Under UV radiation, white light is generated by coupling 436 and 565nm emission bands attributed to Ce3+ and Eu2+ radiations, respectively.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50742007 and 50972015, the National High Technology Research and Development Program of China under Grant No 2007AA03Z103, the National Defense Fund under Grant No 401050301 and the Key Laboratory Foundation of Sonar Technology of China under Grant No 9140C24KF0901.
文摘The double-scale lead zirconate titanate (PZT) piezoelectric ceramics were prepared by the solid state processing with PZT nano-crystalline and micro-powder. The microstructures, electrical and mechanical properties of the double-scale PZT are investigated. All the sintered ceramics exhibit a single perovskite structure and the grain size of the dou ble-scale PZT reduces due to the incorporation of PZT nano-crystalline. Compared to normal PZT, the mechanical properties increase significantly and the piezoelectric properties decrease slightly. Mechanisms responsible for the reinforcement of the double-scale PZT are discussed.
基金Supported by the Natural Science Foundation of Guangdong Province under Grant No 7009409, and Program of Science and Technology of Shenzhen under Grant No 200729.
文摘Copper indium diselenide (CuInSe2) thin films were prepared by ion beam sputtering Cu, In and Se targets continuously on BK7 glass substrates and the three-layer film was then annealed in the same vacuum chamber. X-ray diffraction shows that the CuInSe2 thin films have a single chalcopyrite structure with preferential (112) orientation. Scanning electron microscopy reveals that the CIS thin films consist of uniform and densely packed grain clusters. Energy dispersive x-ray spectroscopy demonstrates that the elemental composition of CIS films approaches the stochiometric composition ratios of 1:1:2. Raman measurement shows that the main peak is at about 174cm^-1 and this peak is identified as the A1 vibrational mode from chaicopyrite ordered CulnSe2. Optical transmission and absorption spectroscopy measurement reveal an energy band gap of about 1.05 eV and an absorption coefficient of 10^5 cm^-1. The film resistivity is about 0.01 Ωcm.
基金Supported by the National Natural Science Foundation of China under Grant No 50871009, the National Magnetic Confinement Fusion Program under Grant No 2009GB106003, and the Fundamental Research Funds for the Central Universities under Grant No YWF-10-01-B20.
文摘We investigate the structure, energetics, and the ideal tensile strength of tungsten (W) with hydrogen (H) using a first-principles method. Both density of states (DOS) and the electron localization function (ELF) reveal the underlying physical mechanism that the tetrahedral interstitial H is the most energetically favorable. The firstprinciples computational tensile test (FPCTT) shows that the ideal tensile strength is 29.1 GPa at the strain of 14% along the [001] direction for the intrinsic W, while it decreases to 27.1 GPa at the strain of 12% when one impurity H atom is embedded into the bulk W. These results provide a useful reference to understand W as a plasma facing material in the nuclear fusion Tokamak.
文摘Optical properties of silver nanoparticles such as extinction, absorption and scattering efficiencies are studied based on Green's function theory. The numerical simulation results show that optical properties of silver nanoparticles are mainly dependent on their sizes and geometries; the localized plasmon resonance peak is red shifted when the dielectric constant of the particle's surrounding medium increases or when a substrate is presented. The influences of wave polarizations, the incident angles of light, the composite silver and multiply-layers on the plasmon resonance are also reported. The numerical simulation of optical spectra is a very useful tool for nanoparticle growth and characterization.
基金Supported by the National Natural Science Foundations of China under Grant No 50872130.
文摘The La2Ti2O7:Pr^3+, which emits red color luminescence upon UV light excitation, is prepared by the conventional high-temperature solid-state method and its luminescent properties are systematically investigated. X-ray diffraction, photoluminescence, afterglow emission spectra and long-lasting phosphorescence (LLP) decay curves are used to characterize this phosphor. After irradiation by a 290-nm UV light for 3 rain, the Pr^3+-doped La2Ti2O7 phosphor emits intense red emitting afterglow from the ^1D2 →^ 3H4 transitions, and its afterglow can be seen with the naked eye in the dark clearly for more than 1 h after removal of the excitation source. The afterglow decay curve of the Pr^3+-doped La2Ti2O7 phosphor contains a fast decay component and another slow decay one. The possible mechanism of this red light emitting LLP phosphor is also discussed based on the experimental results.
基金Supported by the National Natural Science Foundation of China under Grant Nos 90607003 and 60806038, and the National High Technology Research and Development Program of China under Grant Nos 2006AA040106 and 2006AA040102.
文摘Diamond-like carbon (DLC) films are prepared on silicon substrates by microwave electron cyclotron resonance plasma enhanced chemical vapor deposition. Raman spectroscopy indicates that the films have an amorphous structure and typical characteristics. The topographies of the films are presented by AFM images. Effective thermal conductivities of the films are measured using a nanosecond pulsed photothermal reflectance method. The results show that thermal conductivity is dominated by the microstructure of the films.
基金Supported by the National Natural Science Foundation of China under Grant Nos 50472009, 10474091 and 50532070.
文摘The influence of ZnO microstructure on electrical barriers is investigated using capacitance-voltage (C - V), current-voltage (I- V) and deep level transient spectroscopy (DLTS) measurements. A deep level center located at Ec - 0.24 eV obtained by DLTS in the ZnO films is an intrinsic defect related to Zni. The surface states in the ZnO grains that have acceptor behavior of capturing electrons from Zni defects result in the formation of grain barriers. In addition, we find that the current transport is dominated by grain barriers after annealing at 600℃ at 02 ambient. With the increment of the annealing temperature, the current transport mechanism of ZnO/Si heterostructure is mainly dominated by thermo-emission.
基金Supported by the National Natural Science Foundation of China under Grant No 20472060.
文摘An undoped electrophosphorescent organic light-emitting diode is fabricated using a pure platinum(Ⅱ) (2-phenylpyridinato-N, Ca) (3-benzoyl-camphor) [(ppy)pt(bcam)] phosphorescent layer acting as the emitting layer. A maximum power efficiency Tlp of 6.621m/W and current efficiency of 14.78 cd/A at 745 cd/m2 are obtained from the device. The roll-off percentage of ηp of the pure phosphorescent phosphor layer device is reduced to 5% at a current density of 20mA/cm2, which is about 11% for conventional phosphorescent devices. The low roll-off efficiency is attributed to the phosphorescent material, which has the molecular structure of a strong steric hindrance effect.