This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded ...This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded on the classic theoretic framework that system resilience is defined in multiple dimensions for a constructed system.Consequentially,system resilience can lose its parametric form as a random variable,falling into the realm of nonparametric statistics.With this nonparametric shift,traditional distribution-based statistics are ineffective in characterizing the migration of system resilience due to the variation of system parameters.Three statistical tools are proposed under the nonparametric statistical resilience analysis(npSRA)framework,including nonparametric copula-based sensitivity analysis,two-sample resilience test analysis,and a novel tool for resilience attenuation analysis.To demonstrate the use of this framework,we focus on electric distribution systems,commonly found in many urban,suburban,and rural areas and vulnerable to tropical storms.A novel procedure for considering resourcefulness parameters in the socioeconomic space is proposed.Numerical results reveal the complex sta-tistical relations between the distributions of system resilience,physical aging,and socioeconomic parameters for the power distribution system.The proposed resilience distance computing and resilience attenuation anal-ysis further suggests two proper nonparametric distance metrics,the Earth Moving Distance(EMD)metric and the Cramévon Mises(CVM)metric,for characterizing the migration of system resilience for electric distribution systems.展开更多
As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft ele...As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.展开更多
This article presents a framework and a comprehensive model to optimize the regulation of the electricity distribution system.The regulatory requirements of the electricity distribution system and research gaps in thi...This article presents a framework and a comprehensive model to optimize the regulation of the electricity distribution system.The regulatory requirements of the electricity distribution system and research gaps in this field are among the important outputs of this review article.In each of the presented parts of the framework,it has reviewed,introduced and listed the regulatory studies of the electricity distribution system.In order to calculate the PDSR(regulation of power distribution system)framework,governance first presents,its goals,and its development plan in the distribution sector,and discusses the regulatory position in it.After that,in the electricity distribution system,it describes the role of the regulator in the goals and plans of the electricity distribution system,and introduces the types of regulation of the electricity distribution system,and finally,discusses about the place of data in the regulation and its requirements,and the effects of regulation in the evolution and stability of the electricity distribution system.展开更多
Like others countries of the world, in Niger also, we are witnessing an increasing use of non-linear electric loads in the domestic, hospital and industrial sectors. However, these loads degrade the shape of the elect...Like others countries of the world, in Niger also, we are witnessing an increasing use of non-linear electric loads in the domestic, hospital and industrial sectors. However, these loads degrade the shape of the electrical signal and cause disastrous effects to the equipment of the distribution system and the devices which are connected to the network. This article highlights the presence of electric harmonics in the distribution network in Niamey city. In order to do this, measurements were taken at the secondary level of the substations using an energy quality analyze r (FLUKE 1735). By using this measuring instrument, we quantified the voltage and current Total Harmonic Distortion (THD) in the three substations. The results obtained show that, although the statutable rates set by the standards are not exceeded for phase conductors, the neutral contains a very critical percentage of distortion on the residential and hospital substations. Moreover, this assessment made it possible to observe the variation of harmonics in the presence of voltage drops.展开更多
In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ...In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.展开更多
Lack of up-to-date information on efficient operation and maintenance of EPDS (electric power distribution systems), Nigeria is addressed by designing and implementing an indigenous real-time monitoring and diagnosi...Lack of up-to-date information on efficient operation and maintenance of EPDS (electric power distribution systems), Nigeria is addressed by designing and implementing an indigenous real-time monitoring and diagnosis system. The system encompasses the development of software driven hardware positioned at the remotely located sub-stations at the low voltage level to keep track of the network in real-time. The detection of faults exploits threshold passing algorithm through continuous monitoring of the network power quality. Communication between the RTU (remote terminal unit) and the DCC (distribution control center) which is based on GSM is initiated by disturbance. The DCC performs fault evaluation processing using the received data and predetermined faults signatures to determine the nature of disturbance and presents the result in graphic user interface environment. A fault reporting time of 2 s was achieved. The developed system exhibits a high degree of accuracy and manifests no spurious reports during testing. The resultant system limits the effects of interruption and increases power availability by reducing the down time. The system strengthens engineering and management capabilities required to enhance reliability by providing information about the network health status.展开更多
A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface po...A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.展开更多
A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prep...A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al2O3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al2O3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of T J1 decreases while that of T J2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained.展开更多
The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field dis...The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified.It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap.The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode.The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature,which is beneficial for industrial applications.This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD,which can provide some references for the development and applications of the DBD in the future.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission,...In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.展开更多
The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) e...The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.展开更多
The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not o...The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not only electric contact,but also intrinsic defects,especially grown-in twin boundaries.Here,the electric field distribution around twin boundaries is investigated in a CdZnTe bicrystal detector with a{111}–{111}twin plane using the Pockels electro-optic effect.The results of laser beam induced current pulses are also obtained by the transient current technique,and we discuss the influence of the twin boundary on the electric field evolution.These studies reveal a significant distortion of the electric field,which is attributed to the buildup of space charges at twin boundaries.Also,the position of these space charge regions depends on the polarity of the detector bias.An energy band model based on the formation of an n–n+–n junction across the twin boundary has been established to explain the observed results.展开更多
Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distr...Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distribution around core/shell NPs (a type of composite NPs) in ferrofluids under the influence of an external magnetic field. The NPs are made of cobalt (ferromagnetic) coated with gold (metallic). Under the influence of the external magnetic field, these NPs will align along the direction of this field, thus forming a chain of NPs. According to Laplace's equations, we obtain electric fields inside and outside the NPs as a function of the incident wavelength by taking into account the mutual interaction between the polarized NPs. Our calculation results show that the electric field distribution is closely related to the resonant incident wavelength, the metallic shell thickness, and the inter-particle distance. These analytical calculations agree well with our numerical simulation results. This kind of field-induced anisotropic soft-matter systems offers the possibility of obtaining an enhanced Raman scattering substrate due to enhanced electric fields.展开更多
Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a unifor...Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.展开更多
By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are sim...By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.展开更多
The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification...The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.展开更多
The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational i...The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.展开更多
The aim of this study was to find out what types of services Finnish distribution companies were purchasing and what is the future trend related to them. Results were gathered from Finnish distribution companies using...The aim of this study was to find out what types of services Finnish distribution companies were purchasing and what is the future trend related to them. Results were gathered from Finnish distribution companies using questionnaire. Theoretical background was collected from literacy to get more information of benefits and risks. Results indicate that purchasing services especially from independent service providers is increasing. Also the benefits are greater than the risks related to service purchasing.展开更多
基金supported by the National Science Foundation(NSF)under Award Number IIA-1355406.
文摘This paper proposes a set of nonparametric statistical tools for analyzing the system resilience of civil structures and infrastructure and its migration upon changes in critical system parameters.The work is founded on the classic theoretic framework that system resilience is defined in multiple dimensions for a constructed system.Consequentially,system resilience can lose its parametric form as a random variable,falling into the realm of nonparametric statistics.With this nonparametric shift,traditional distribution-based statistics are ineffective in characterizing the migration of system resilience due to the variation of system parameters.Three statistical tools are proposed under the nonparametric statistical resilience analysis(npSRA)framework,including nonparametric copula-based sensitivity analysis,two-sample resilience test analysis,and a novel tool for resilience attenuation analysis.To demonstrate the use of this framework,we focus on electric distribution systems,commonly found in many urban,suburban,and rural areas and vulnerable to tropical storms.A novel procedure for considering resourcefulness parameters in the socioeconomic space is proposed.Numerical results reveal the complex sta-tistical relations between the distributions of system resilience,physical aging,and socioeconomic parameters for the power distribution system.The proposed resilience distance computing and resilience attenuation anal-ysis further suggests two proper nonparametric distance metrics,the Earth Moving Distance(EMD)metric and the Cramévon Mises(CVM)metric,for characterizing the migration of system resilience for electric distribution systems.
文摘As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.
文摘This article presents a framework and a comprehensive model to optimize the regulation of the electricity distribution system.The regulatory requirements of the electricity distribution system and research gaps in this field are among the important outputs of this review article.In each of the presented parts of the framework,it has reviewed,introduced and listed the regulatory studies of the electricity distribution system.In order to calculate the PDSR(regulation of power distribution system)framework,governance first presents,its goals,and its development plan in the distribution sector,and discusses the regulatory position in it.After that,in the electricity distribution system,it describes the role of the regulator in the goals and plans of the electricity distribution system,and introduces the types of regulation of the electricity distribution system,and finally,discusses about the place of data in the regulation and its requirements,and the effects of regulation in the evolution and stability of the electricity distribution system.
文摘Like others countries of the world, in Niger also, we are witnessing an increasing use of non-linear electric loads in the domestic, hospital and industrial sectors. However, these loads degrade the shape of the electrical signal and cause disastrous effects to the equipment of the distribution system and the devices which are connected to the network. This article highlights the presence of electric harmonics in the distribution network in Niamey city. In order to do this, measurements were taken at the secondary level of the substations using an energy quality analyze r (FLUKE 1735). By using this measuring instrument, we quantified the voltage and current Total Harmonic Distortion (THD) in the three substations. The results obtained show that, although the statutable rates set by the standards are not exceeded for phase conductors, the neutral contains a very critical percentage of distortion on the residential and hospital substations. Moreover, this assessment made it possible to observe the variation of harmonics in the presence of voltage drops.
文摘In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.
文摘Lack of up-to-date information on efficient operation and maintenance of EPDS (electric power distribution systems), Nigeria is addressed by designing and implementing an indigenous real-time monitoring and diagnosis system. The system encompasses the development of software driven hardware positioned at the remotely located sub-stations at the low voltage level to keep track of the network in real-time. The detection of faults exploits threshold passing algorithm through continuous monitoring of the network power quality. Communication between the RTU (remote terminal unit) and the DCC (distribution control center) which is based on GSM is initiated by disturbance. The DCC performs fault evaluation processing using the received data and predetermined faults signatures to determine the nature of disturbance and presents the result in graphic user interface environment. A fault reporting time of 2 s was achieved. The developed system exhibits a high degree of accuracy and manifests no spurious reports during testing. The resultant system limits the effects of interruption and increases power availability by reducing the down time. The system strengthens engineering and management capabilities required to enhance reliability by providing information about the network health status.
文摘A novel analytical model for the thin film silicon on insulator (TFSOI) reduced surface field (RESURF) devices has been proposed.Based on the 2-D Poisson equation solution,the analytical expressions for the surface potential and field distributions are derived.From this analysis,the optimum design condition for the maximum breakdown voltage is obtained.The dependence of the maximum breakdown voltage on the drift region length is examined and the relationship between the critical doping concentration and the front- and back- interface oxide layer thickness is discussed.The numerical simulation performed by the advanced semiconductor simulation tool,DESSIS-ISE,has been shown to support the analytical results.
基金supported by National Natural Science Foundation of China(61100159,61233007)National High Technology Research and Development Program of China(863 Program)(2011AA040103)+2 种基金Foundation of Chinese Academy of Sciences(KGCX2-EW-104)Financial Support of the Strategic Priority Research Program of Chinese Academy of Sciences(XDA06021100)the Cross-disciplinary Collaborative Teams Program for Science,Technology and Innovation,of Chinese Academy of Sciences-Network and System Technologies for Security Monitoring and Information Interaction in Smart Grid Energy Management System for Micro-smart Grid
基金supported by National Science Fund for Outstanding Young Scholars of China (No. 50625721)
文摘A new insulation system with inorganic A-B-A insulators was proposed to improve the surface flashover performance in vacuum. Inorganic A-B-A insulator samples of Mo/Al2O3 cermet-Al2O3 ceramic-Mo/Al2O3 cermet were prepared, in which the conductivity and permittivity of the Mo/Al2O3 cermets were controlled through different amount of metallic molybdenum powder added. The effects of both conductivity and permittivity of Mo/Al2O3 cermets on the DC and impulse surface flashover voltage in vacuum were experimentally investigated. The result showed that the DC and impulse surface flashover voltage were improved by 52% and 95%, respectively. For the distribution of electric field, two triple junctions, i.e., vacuum-layer A-cathode (TJ1) and vacuum-layer A-layer B (TJ2) were prepared with the introduction of layer A into the A-B-A insulation system. Based on the electric field distribution obtained via electrostatic field simulation and Maxwell-Wagner three-layer model, the electric field of T J1 decreases while that of T J2 increases with the increase in conductivity and permittivity of layer A under applied DC and impulse voltage, respectively. Therefore, the improvement of surface flashover performance of A-B-A insulators has been reasonably explained.
基金supported by the Science and Technology Innovation Commission of Shenzhen(No.JCYJ20180507181858539)Shenzhen Science and Technology Program(No.KQTD20180412181422399)the National Key R&D Program of China(No.2019YFB2204500).
文摘The dielectric barrier discharge(DBD)in air at atmospheric pressure is not suitable for industrial applications due to its randomly distributed discharge filaments.In this paper,the influence of the electric field distribution on the uniformity of DBD is theoretically analyzed and experimentally verified.It is found that a certain degree of uneven electric field distributions can control the development of electron avalanches and regulate their transition to streamers in the gap.The discharge phenomena and electrical characteristics prove that an enhanced Townsend discharge can be formed in atmospheric-pressure air with a curved-plate electrode.The spectral analysis further confirms that the gas temperature of the plasma produced by the curved-plate electrode is close to room temperature,which is beneficial for industrial applications.This paper presents the relationship between the electron avalanche transition and the formation of a uniform DBD,which can provide some references for the development and applications of the DBD in the future.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
基金Project supported by CAST Innovation Fund (Grant No.CAST-BISEE2019-040)。
文摘In electron beam technology, one of the critical focuses of research and development efforts is on improving the measurement of electron beam parameters. The parameters are closely related to the generation, emission, operation environment, and role of the electron beam and the corresponding medium. In this study, a field calculation method is proposed, and the electric field intensity distribution on the electron beam’s cross-section is analyzed. The characteristics of beam diffusion caused by the space charge effect are investigated in simulation, and the obtained data are compared with the experiment. The simulation demonstrated that the cross-sectional electric field distribution is primarily affected by the electron beam current, current density distribution, and electron beam propagation speed.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.40876094 and JQ10974106)the National High Technology Research and Development Program of China(Grant Nos.2009AA09Z102 and 2008AA09A403)+1 种基金the Excellent Youth Fundation of Shandong Scientific Committee,China(Grant No.JQ201018)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2009AZ002)
文摘The perturbation method is used to study the localization of electric field distribution and the effective nonlinear response of graded composites under an external alternating-current(AC) and direct-current(DC) electric field E app = E 0(1 + sin ωt).The dielectric profile of the cylindrical inclusions is modeled by function ε i(r) = C k r k(r ≤ a),where r is the radius of the cylindrical inclusion,and C k,k,a are parameters.In the dilute limit,the local potentials and the effective nonlinear responses at all harmonics are derived.Meanwhile,the general effective nonlinear responses are also derived and compared with the effective nonlinear responses at harmonics under the AC and DC external field.It is found that the effective nonlinear AC and DC responses at harmonics can be calculated by those of the general effective nonlinear of the graded composites under the external DC electric field.Moreover,the obtained local electrical fields show that the electrical field distribution in the cylindrical inclusions is controllable,and the maximum of the electric field inside the cylinder is at its center.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.U1631116 and 51702271)the National Key Research and Development Program of China(Grant No.2016YFE0115200)+3 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2017KW-029)Austrian Academic Exchange Service(ÖD-WTZ)through project CN 02/2016the Fundamental Research Funds for the Central Universities of China(Grant Nos.3102017zy057 and 3102018jcc036)the Young and Middle-aged Teachers Education and Scientific Research Foundation of Fujian Province,China(Grant No.JAT170407)
文摘The performance of CdZnTe X/γ-ray detectors is strongly affected by the electric field distribution in terms of charge transport and charge collection.Factors which determine the electric field distribution are not only electric contact,but also intrinsic defects,especially grown-in twin boundaries.Here,the electric field distribution around twin boundaries is investigated in a CdZnTe bicrystal detector with a{111}–{111}twin plane using the Pockels electro-optic effect.The results of laser beam induced current pulses are also obtained by the transient current technique,and we discuss the influence of the twin boundary on the electric field evolution.These studies reveal a significant distortion of the electric field,which is attributed to the buildup of space charges at twin boundaries.Also,the position of these space charge regions depends on the polarity of the detector bias.An energy band model based on the formation of an n–n+–n junction across the twin boundary has been established to explain the observed results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11104252 and 11222544)the Science Fund of the Ministry of Education of China(Grant No.20114101110003)+6 种基金the Fund for Science and Technology Innovation Team of Zhengzhou City(2011-03)the Aeronautical Science Foundation of China(Grant No.2011ZF55015)the Basic and Frontier Technology Research Program of Henan Province,China(Grant Nos.112300410264 and 122300410162)the Cooperation Fund with Fudan University,China(Grant No.KL2011-01)the Fok Ying Tung Education Foundation,China(GrantNo.131008)the Program for New Century Excellent Talents in University(Grant No.NCET-12-0121)the National Key Basic Research Program of China(Grant No.2011CB922004)
文摘Composite nanoparticles (NPs) have the ability of combining materials with different properties together, thus receiving extensive attention in many fields. Here we theoretically investigate the electric field distribution around core/shell NPs (a type of composite NPs) in ferrofluids under the influence of an external magnetic field. The NPs are made of cobalt (ferromagnetic) coated with gold (metallic). Under the influence of the external magnetic field, these NPs will align along the direction of this field, thus forming a chain of NPs. According to Laplace's equations, we obtain electric fields inside and outside the NPs as a function of the incident wavelength by taking into account the mutual interaction between the polarized NPs. Our calculation results show that the electric field distribution is closely related to the resonant incident wavelength, the metallic shell thickness, and the inter-particle distance. These analytical calculations agree well with our numerical simulation results. This kind of field-induced anisotropic soft-matter systems offers the possibility of obtaining an enhanced Raman scattering substrate due to enhanced electric fields.
基金Project supported by the Natural Science Foundation of Fujian Province,China (Grant Nos. 2010J01210,B509043A,and2011J05006)
文摘Based on the nanostructured surface model,where conical nanoparticle arrays grow out symmetrically from a plane metal substrate,a theoretical model of the local electric potential near nanocones is built when a uniform external electric field is applied.In terms of this model,the electric potential distribution near the nanocone arrays is obtained and given by a curved surface using a numerical computation method.The computational results show that the electric potential distribution near the nanocone arrays exhibit an obvious geometrical symmetry.These results could serve as a basis for explaining many abnormal phenomena,such as the abnormal infrared effects(AIREs) which are found on nanostructured metal surfaces,as well as a reference for investigating the applications of nanomaterials,such as nanoelectrodes and nanosensors.
基金Projected supported by the National Natural Science Foundation of China(Grant No.11174182)the Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20110131110005)
文摘By making use of the quasi-two-dimensional (quasi-2D) model, the current-voltage (l-V) characteristics of In0AsA10.82N/A1N/GaN heterostructure field-effect transistors (HFETs) with different gate lengths are simulated based on the measured capacitance-voltage (C-V) characteristics and I-V characteristics. By analyzing the variation of the electron mobility for the two-dimensional electron gas (2DEG) with electric field, it is found that the different polarization charge distributions generated by the different channel electric field distributions can result in different polarization Coulomb field scatterings. The difference between the electron mobilities primarily caused by the polarization Coulomb field scatterings can reach up to 1522.9 cm2/V.s for the prepared In0.38AI0.82N/A1N/GaN HFETs. In addition, when the 2DEG sheet density is modulated by the drain-source bias, the electron mobility presents a peak with the variation of the 2DEG sheet density, the gate length is smaller, and the 2DEG sheet density corresponding to the peak point is higher.
基金Project(2009CB724504)supported by the National Basic Research Program of China
文摘The oil-pressboard insulation is a typical composite insulation system widely used in the design and manufactory of large power apparatus. The implement of oil-pressboard insulation may lead to surface electrification and discharge at the interface under certain condition. It is of significant importance to take an insight into the phenomenon occurring at the interface. Through experiment, the pressboard is found as a porous material. The interface changes abruptly from bulk pressboard to the bulk oil as a result of the porous structure. A new model is proposed which divides the interface into bulk oil region, transition region, and bulk pressboard region. The width of the transition region is decided according to the microtome figure. The effective permittivity of the transition region is calculated using a new model based on fractal theory. The model is validated and compared with previous calculation model. The effect of the existence of transition region on the electric field distribution is discussed.
文摘The situation of electricity in Pakistan has been alarming from the last ten years. The deficiency in electricity has not only obstructed the business activities but also affected the domestic consumers, educational institutes and hospitals. Usually electrical power companies are liable for electricity shortfall and power interruption. However, electricity end consumers are also equally responsible behind strange shortfall and unusual power interruption. Frequently, the consumers use the heavy electrical equipment in their homes including heaters, geysers, irons and water motors which causes the more electricity consumption, load shedding and huge amount of bills. For escaping the huge amount of electricity bill, the consumers commit the illegal and unethical connections. The illegal usage of electrical power failed the power companies to plan schedule load shedding accordingly and the other side the damaged electricity wires or Pole Mount Transformer increased faults due to overburdening, which directly affected on extend power interruption. In addition that, responsible teams of electrical power companies cannot reach instantly to repair faults and prevent the theft. Electricity thieving is social crime committed by the consumers or meter readers which causes the electricity strange shortfall within country. This paper presents the practical demonstration about the common energy theft methods and techniques done by electricity consumers within their home and residential building. In Pakistan EPC (electrical power companies) deploy the traditional electromechanical meters for electricity consumption measurements, however, these meters do not have any real time communication. Therefore there are many easy ways to manipulate the meter reading as well as internal structural of metering system.
文摘The aim of this study was to find out what types of services Finnish distribution companies were purchasing and what is the future trend related to them. Results were gathered from Finnish distribution companies using questionnaire. Theoretical background was collected from literacy to get more information of benefits and risks. Results indicate that purchasing services especially from independent service providers is increasing. Also the benefits are greater than the risks related to service purchasing.