期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
PoQ-Consensus Based Private Electricity Consumption Forecasting via Federated Learning
1
作者 Yiqun Zhu Shuxian Sun +3 位作者 Chunyu Liu Xinyi Tian Jingyi He Shuai Xiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第9期3285-3297,共13页
With the rapid development of artificial intelligence and computer technology,grid corporations have also begun to move towards comprehensive intelligence and informatization.However,data-based informatization can bri... With the rapid development of artificial intelligence and computer technology,grid corporations have also begun to move towards comprehensive intelligence and informatization.However,data-based informatization can bring about the risk of privacy exposure of fine-grained information such as electricity consumption data.The modeling of electricity consumption data can help grid corporations to have a more thorough understanding of users’needs and their habits,providing better services for users.Nevertheless,users’electricity consumption data is sensitive and private.In order to achieve highly efficient analysis of massive private electricity consumption data without direct access,a blockchain-based federated learning method is proposed for users’electricity consumption forecasting in this paper.Specifically,a blockchain systemis established based on a proof of quality(PoQ)consensus mechanism,and a multilayer hybrid directional long short-term memory(MHD-LSTM)network model is trained for users’electricity consumption forecasting via the federal learning method.In this way,the model of the MHD-LSTM network is able to avoid suffering from severe security problems and can only share the network parameters without exchanging raw electricity consumption data,which is decentralized,secure and reliable.The experimental result shows that the proposed method has both effectiveness and high-accuracy under the premise of electricity consumption data’s privacy preservation,and can achieve better performance when compared to traditional long short-term memory(LSTM)and bidirectional LSTM(BLSTM). 展开更多
关键词 Blockchain consensus mechanism federated learning electricity consumption forecasting privacy preservation
下载PDF
Threefold Optimized Forecasting of Electricity Consumption in Higher Education Institutions
2
作者 Majida Kazmi Hashim Raza Khan +2 位作者 Lubaba Mohammad Hashir Bin Khalid Saad Ahmed Qazi 《Computers, Materials & Continua》 SCIE EI 2022年第11期2351-2370,共20页
Energy management benefits both consumers and utility companiesalike. Utility companies remain interested in identifying and reducing energywaste and theft, whereas consumers’ interest remain in lowering their energy... Energy management benefits both consumers and utility companiesalike. Utility companies remain interested in identifying and reducing energywaste and theft, whereas consumers’ interest remain in lowering their energyexpenses. A large supply-demand gap of over 6 GW exists in Pakistan asreported in 2018. Reducing this gap from the supply side is an expensiveand complex task. However, efficient energy management and distributionon demand side has potential to reduce this gap economically. Electricityload forecasting models are increasingly used by energy managers in takingreal-time tactical decisions to ensure efficient use of resources. Advancementin Machine-learning (ML) technology has enabled accurate forecasting ofelectricity consumption. However, the impact of computation cost affordedby these ML models is often ignored in favour of accuracy. This studyconsiders both accuracy and computation cost as concurrently significantfactors because together they shape the technology environment as well ascreate economic impact. Thus, a three-fold optimized load forecasting modelis proposed which includes (1) application specific parameters selection, (2)impact of different dataset granularities and (3) implementation of specificdata preparation. It deploys and compares the widely used back-propagationArtificial Neural Network (ANN) and Random Forest (RF) models for theprediction of electricity consumption of buildings within a university. In addition to the temporal and historical power consumption date as input parameters, the study also embeds weather data as well as university operationalcalendars resulting in improved performance. The outcomes are indicativethat the granularity i.e. the scale of details in data, and set of reduced and fullinput parameters impact performance accuracies differently for ANN and RFmodels. Experimental results show that overall RF model performed betterboth in terms of accuracy as well as computational time for a 1-min, 15-minand 1-h dataset granularities with the mean absolute percentage error (MAPE)of 2.42, 3.70 and 4.62 in 11.1 s, 1.14 s and 0.3 s respectively, thus well suitedfor a real-time energy monitoring application. 展开更多
关键词 electricity forecasting short term higher educational institution artificial neural network random forest ACCURACY computational time
下载PDF
Analyses of Current Electricity Price and Its Changing Trend Forecast in the Coming Five Years
3
作者 黄少中 《Electricity》 2002年第2期5-8,共4页
This paper analyzes the level, characteristics and existing problems of current electricityprice in China. Under the present circumstances the overall orientation of power price reform inthe 10th Five-year Plan period... This paper analyzes the level, characteristics and existing problems of current electricityprice in China. Under the present circumstances the overall orientation of power price reform inthe 10th Five-year Plan period should satisfy the requirements of power industry restructuring.Therefore, it is necessary to set up an appropriate pricing mechanism and system including thelinks of sales price to network, transmission and distribution price (T&D price) and sales price.In the light of various factors influencing increase and decrease in price, a forecast of electricitytariff is given in the five years to come.[ 展开更多
关键词 current electricity price electricity price forecasting sales price to network T&Dprice sales price
下载PDF
SVR-Boosting ensemble model for electricity price forecasting in electric power market
4
作者 周佃民 高琳 +1 位作者 管晓宏 高峰 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第1期90-94,共5页
A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristic... A revised support vector regression (SVR) ensemble model based on boosting algorithm (SVR-Boosting) is presented in this paper for electricity price forecasting in electric power market. In the light of characteristics of electricity price sequence, a new triangular-shaped 为oss function is constructed in the training of the forecasting model to inhibit the learning from abnormal data in electricity price sequence. The results from actual data indicate that, compared with the single support vector regression model, the proposed SVR-Boosting ensemble model is able to enhance the stability of the model output remarkably, acquire higher predicting accuracy, and possess comparatively satisfactory generalization capability. 展开更多
关键词 electricity price forecasting support vector regression boosting algorithm ensemble model gen-eralization capability
下载PDF
Electricity Price Forecasting Based on AOSVR and Outlier Detection
5
作者 ZhouDianmin GaoLin GaoFeng 《Electricity》 2005年第2期23-26,共4页
Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It ... Electricity price is of the first consideration for all the participants in electric power market and its characteristics are related to both market mechanism and variation in the behaviors of market participants. It is necessary to build a real-time price forecasting model with adaptive capability; and because there are outliers in the price data, they should be detected and filtrated in training the forecasting model by regression method. In view of these points, mis paper presents an electricity price forecasting method based on accurate on-line support vector regression (AOSVR) and outlier detection. Numerical testing results show that the method is effective in forecasting the electricity prices in electric power market 展开更多
关键词 electric power market electricity price forecasting AOSVR outlier detection
下载PDF
Machine Learning-based Electric Load Forecasting for Peak Demand Control in Smart Grid
6
作者 Manish Kumar Nitai Pal 《Computers, Materials & Continua》 SCIE EI 2023年第3期4785-4799,共15页
Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consump... Increasing energy demands due to factors such as population,globalization,and industrialization has led to increased challenges for existing energy infrastructure.Efficient ways of energy generation and energy consumption like smart grids and smart homes are implemented to face these challenges with reliable,cheap,and easily available sources of energy.Grid integration of renewable energy and other clean distributed generation is increasing continuously to reduce carbon and other air pollutants emissions.But the integration of distributed energy sources and increase in electric demand enhance instability in the grid.Short-term electrical load forecasting reduces the grid fluctuation and enhances the robustness and power quality of the grid.Electrical load forecasting in advance on the basic historical data modelling plays a crucial role in peak electrical demand control,reinforcement of the grid demand,and generation balancing with cost reduction.But accurate forecasting of electrical data is a very challenging task due to the nonstationary and nonlinearly nature of the data.Machine learning and artificial intelligence have recognized more accurate and reliable load forecastingmethods based on historical load data.The purpose of this study is to model the electrical load of Jajpur,Orissa Grid for forecasting of load using regression type machine learning algorithms Gaussian process regression(GPR).The historical electrical data and whether data of Jajpur is taken for modelling and simulation and the data is decided in such a way that the model will be considered to learn the connection among past,current,and future dependent variables,factors,and the relationship among data.Based on this modelling of data the network will be able to forecast the peak load of the electric grid one day ahead.The study is very helpful in grid stability and peak load control management. 展开更多
关键词 Artificial intelligence electric load forecasting machine learning peak-load control renewable energy smart grids
下载PDF
Data-Driven Load Forecasting Using Machine Learning and Meteorological Data
7
作者 Aishah Alrashidi Ali Mustafa Qamar 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1973-1988,共16页
Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be i... Electrical load forecasting is very crucial for electrical power systems’planning and operation.Both electrical buildings’load demand and meteorological datasets may contain hidden patterns that are required to be investigated and studied to show their potential impact on load forecasting.The meteorological data are analyzed in this study through different data mining techniques aiming to predict the electrical load demand of a factory located in Riyadh,Saudi Arabia.The factory load and meteorological data used in this study are recorded hourly between 2016 and 2017.These data are provided by King Abdullah City for Atomic and Renewable Energy and Saudi Electricity Company at a site located in Riyadh.After applying the data pre-processing techniques to prepare the data,different machine learning algorithms,namely Artificial Neural Network and Support Vector Regression(SVR),are applied and compared to predict the factory load.In addition,for the sake of selecting the optimal set of features,13 different combinations of features are investigated in this study.The outcomes of this study emphasize selecting the optimal set of features as more features may add complexity to the learning process.Finally,the SVR algorithm with six features provides the most accurate prediction values to predict the factory load. 展开更多
关键词 electricity load forecasting meteorological data machine learning feature selection modeling real-world problems predictive analytics
下载PDF
Long-Term Electrical Load Forecasting in Rwanda Based on Support Vector Machine Enhanced with Q-SVM Optimization Kernel Function
8
作者 Eustache Uwimana Yatong Zhou Minghui Zhang 《Journal of Power and Energy Engineering》 2023年第8期32-54,共23页
In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access ... In recent years, Rwanda’s rapid economic development has created the “Rwanda Africa Wonder”, but it has also led to a substantial increase in energy consumption with the ambitious goal of reaching universal access by 2024. Meanwhile, on the basis of the rapid and dynamic connection of new households, there is uncertainty about generating, importing, and exporting energy whichever imposes a significant barrier. Long-Term Load Forecasting (LTLF) will be a key to the country’s utility plan to examine the dynamic electrical load demand growth patterns and facilitate long-term planning for better and more accurate power system master plan expansion. However, a Support Vector Machine (SVM) for long-term electric load forecasting is presented in this paper for accurate load mix planning. Considering that an individual forecasting model usually cannot work properly for LTLF, a hybrid Q-SVM will be introduced to improve forecasting accuracy. Finally, effectively assess model performance and efficiency, error metrics, and model benchmark parameters there assessed. The case study demonstrates that the new strategy is quite useful to improve LTLF accuracy. The historical electric load data of Rwanda Energy Group (REG), a national utility company from 1998 to 2020 was used to test the forecast model. The simulation results demonstrate the proposed algorithm enhanced better forecasting accuracy. 展开更多
关键词 SVM Quadratic SVM Long-Term Electrical Load forecasting Residual Load Demand Series Historical Electric Load
下载PDF
A Temporal Convolutional Network Based Hybrid Model for Short-term Electricity Price Forecasting 被引量:1
9
作者 Haoran Zhang Weihao Hu +3 位作者 Di Cao Qi Huang Zhe Chen Frede Blaabjerg 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2024年第3期1119-1130,共12页
Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price predictio... Electricity prices have complex features,such as high frequency,multiple seasonality,and nonlinearity.These factors will make the prediction of electricity prices difficult.However,accurate electricity price prediction is important for energy producers and consumers to develop bidding strategies.To improve the accuracy of prediction by using each algorithms’advantages,this paper proposes a hybrid model that uses the Empirical Mode Decomposition(EMD),Autoregressive Integrated Moving Average(ARIMA),and Temporal Convolutional Network(TCN).EMD is used to decompose the electricity prices into low and high frequency components.Low frequency components are forecasted by the ARIMA model and the high frequency series are predicted by the TCN model.Experimental results using the realistic electricity price data from Pennsylvania-New Jersey-Maryland(PJM)electricity markets show that the proposed method has a higher prediction accuracy than other single methods and hybrid methods. 展开更多
关键词 Autoregressive integrated moving average model electricity price forecasting empirical mode decomposition temporal convolutional network
原文传递
Electricity demand forecasting at distribution and household levels using explainable causal graph neural network
10
作者 Amir Miraki Pekka Parviainen Reza Arghandeh 《Energy and AI》 EI 2024年第2期385-395,共11页
Forecasting electricity demand is an essential part of the smart grid to ensure a stable and reliable power grid. With the increasing integration of renewable energy resources into the grid, forecasting the demand for... Forecasting electricity demand is an essential part of the smart grid to ensure a stable and reliable power grid. With the increasing integration of renewable energy resources into the grid, forecasting the demand for electricity is critical at all levels, from the distribution to the household. Most existing forecasting methods, however, can be considered black-box models as a result of deep digitalization enablers, such as deep neural networks, which remain difficult to interpret by humans. Moreover, capture of the inter-dependencies among variables presents a significant challenge for multivariate time series forecasting. In this paper we propose eXplainable Causal Graph Neural Network (X-CGNN) for multivariate electricity demand forecasting that overcomes these limitations. As part of this method, we have intrinsic and global explanations based on causal inferences as well as local explanations based on post-hoc analyses. We have performed extensive validation on two real-world electricity demand datasets from both the household and distribution levels to demonstrate that our proposed method achieves state-of-the-art performance. 展开更多
关键词 Causal inference electricity demand forecasting Explainable artificial intelligence(XAI) Graph neural network
原文传递
A new grey forecasting model based on BP neural network and Markov chain 被引量:6
11
作者 李存斌 王恪铖 《Journal of Central South University of Technology》 EI 2007年第5期713-718,共6页
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq... A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1). 展开更多
关键词 grey forecasting model neural network Markov chain electricity demand forecasting
下载PDF
Deep learning for time series forecasting:The electric load case 被引量:2
12
作者 Alberto Gasparin Slobodan Lukovic Cesare Alippi 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第1期1-25,共25页
Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep le... Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep learning has emerged in the machine learning field achieving impressive performance in a vast range of tasks,from image classification to machine translation.Applications of deep learning models to the electric load forecasting problem are gaining interest among researchers as well as the industry,but a comprehensive and sound comparison among different-also traditional-architectures is not yet available in the literature.This work aims at filling the gap by reviewing and experimentally evaluating four real world datasets on the most recent trends in electric load forecasting,by contrasting deep learning architectures on short-term forecast(oneday-ahead prediction).Specifically,the focus is on feedforward and recurrent neural networks,sequence-to-sequence models and temporal convolutional neural networks along with architectural variants,which are known in the signal processing community but are novel to the load forecasting one. 展开更多
关键词 deep learning electric load forecasting multi-step ahead forecasting smart grid time-series prediction
下载PDF
Energy Price Forecasting Through Novel Fuzzy Type-1 Membership Functions
13
作者 Muhammad Hamza Azam Mohd Hilmi Hasan +2 位作者 Azlinda A Malik Saima Hassan Said Jadid Abdulkadir 《Computers, Materials & Continua》 SCIE EI 2022年第10期1799-1815,共17页
Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to ... Electricity price forecasting is a subset of energy and power forecasting that focuses on projecting commercial electricity market present and future prices.Electricity price forecasting have been a critical input to energy corporations’strategic decision-making systems over the last 15 years.Many strategies have been utilized for price forecasting in the past,however Artificial Intelligence Techniques(Fuzzy Logic and ANN)have proven to be more efficient than traditional techniques(Regression and Time Series).Fuzzy logic is an approach that uses membership functions(MF)and fuzzy inference model to forecast future electricity prices.Fuzzy c-means(FCM)is one of the popular clustering approach for generating fuzzy membership functions.However,the fuzzy c-means algorithm is limited to producing only one type of MFs,Gaussian MF.The generation of various fuzzy membership functions is critical since it allows for more efficient and optimal problem solutions.As a result,for the best and most improved results for electricity price forecasting,an approach to generate multiple type-1 fuzzy MFs using FCM algorithm is required.Therefore,the objective of this paper is to propose an approach for generating type-1 fuzzy triangular and trapezoidal MFs using FCM algorithm to overcome the limitations of the FCM algorithm.The approach is used to compute and improve forecasting accuracy for electricity prices,where Australian Energy Market Operator(AEMO)data is used.The results show that the proposed approach of using FCM to generate type-1 fuzzy MFs is effective and can be adopted. 展开更多
关键词 Fuzzy logic fuzzy C-means type-1 fuzzy membership function electricity price forecasting
下载PDF
The Concept of MDSA (Macro Demand Spatial Approach) on Spatial Demand Forecasting for Main Development Area in Transmission Planning
14
作者 Djoko Darwanto Sudarmono Sasmono Ngapuli Irmea Sinisuka Mukmin Widyanto Atmopawiro 《Journal of Energy and Power Engineering》 2014年第6期1124-1131,共8页
MDSA (macro demand spatial approach) is an approach introduced in long time electricity demand forecasting considering location. It will be used at transmission planning and policy decision on electricity infrastruc... MDSA (macro demand spatial approach) is an approach introduced in long time electricity demand forecasting considering location. It will be used at transmission planning and policy decision on electricity infrastructure development in a region. In the model, MDSA combined with PCA (principal component analysis) and QA (qualitative analysis) to determine main development area in region and the variables that affecting electricity demand in there. Main development area is an area with industrial domination as a driver of economic growth. The electricity demand driver variables are different for type of electricity consumer. However, they will be equal for main development areas. The variables which have no significant effect can be reduced by using PCA. The generated models tested to assess whether it still at the range of confidence level of electricity demand forecasting. At the case study, generated model for main development areas at South Sumatra Subsystem as a part of Sumatra Interconnection System is still in the range of confidence level. Thus, MDSA can be proposed as alternative approach in transmission planning that considering location. 展开更多
关键词 electricity demand forecasting macro demand spatial approach principal component analysis qualitative analysis maindevelopment area transmission planning.
下载PDF
2000 Forecast of the Electrical Appliance Market in China
15
作者 Yan Wen 《China's Foreign Trade》 2000年第3期21-22,共2页
关键词 forecast of the Electrical Appliance Market in China
下载PDF
Data-driven Two-step Day-ahead Electricity Price Forecasting Considering Price Spikes 被引量:2
16
作者 Shengyuan Liu Yicheng Jiang +3 位作者 Zhenzhi Lin Fushuan Wen Yi Ding Li Yang 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2023年第2期523-533,共11页
In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximi... In the electricity market environment,electricity price forecasting plays an essential role in the decision-making process of a power generation company,especially in developing the optimal bidding strategy for maximizing revenues.Hence,it is necessary for a power generation company to develop an accurate electricity price forecasting algorithm.Given this background,this paper proposes a two-step day-ahead electricity price forecasting algorithm based on the weighted Knearest neighborhood(WKNN)method and the Gaussian process regression(GPR)approach.In the first step,several predictors,i.e.,operation indicators,are presented and the WKNN method is employed to detect the day-ahead price spike based on these indicators.In the second step,the outputs of the first step are regarded as a new predictor,and it is utilized together with the operation indicators to accurately forecast the electricity price based on the GPR approach.The proposed algorithm is verified by actual market data in Pennsylvania-New JerseyMaryland Interconnection(PJM),and comparisons between this algorithm and existing ones are also made to demonstrate the effectiveness of the proposed algorithm.Simulation results show that the proposed algorithm can attain accurate price forecasting results even with several price spikes in historical electricity price data. 展开更多
关键词 electricity market electricity price forecasting price spike weighted K-nearest neighborhood(WKNN) Gaussian process regression(GPR).
原文传递
Explainability and Interpretability in Electric Load Forecasting Using Machine Learning Techniques–A Review 被引量:1
17
作者 Lukas Baur Konstantin Ditschuneit +3 位作者 Maximilian Schambach Can Kaymakci Thomas Wollmann Alexander Sauer 《Energy and AI》 EI 2024年第2期483-496,共14页
Electric Load Forecasting(ELF)is the central instrument for planning and controlling demand response programs,electricity trading,and consumption optimization.Due to the increasing automation of these processes,meanin... Electric Load Forecasting(ELF)is the central instrument for planning and controlling demand response programs,electricity trading,and consumption optimization.Due to the increasing automation of these processes,meaningful and transparent forecasts become more and more important.Still,at the same time,the complexity of the used machine learning models and architectures increases.Because there is an increasing interest in interpretable and explainable load forecasting methods,this work conducts a literature review to present already applied approaches regarding explainability and interpretability for load forecasts using Machine Learning.Based on extensive literature research covering eight publication portals,recurring modeling approaches,trends,and modeling techniques are identified and clustered by properties to achieve more interpretable and explainable load forecasts.The results on interpretability show an increase in the use of probabilistic models,methods for time series decomposition and the use of fuzzy logic in addition to classically interpretable models.Dominant explainable approaches are Feature Importance and Attention mechanisms.The discussion shows that a lot of knowledge from the related field of time series forecasting still needs to be adapted to the problems in ELF.Compared to other applications of explainable and interpretable methods such as clustering,there are currently relatively few research results,but with an increasing trend. 展开更多
关键词 Electric load forecasting Explainability InterpretabilityStructured review
原文传递
Spatio-temporal Granularity Co-optimization Based Monthly Electricity Consumption Forecasting
18
作者 Kangping Li Yuqing Wang +2 位作者 Ning Zhang Fei Wang Chunyi Huang 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2023年第5期1980-1984,共5页
Monthly electricity consumption forecasting(ECF)plays an important role in power system operation and electricity market trading.Widespread popularity of smart meters enables collection of fine-grained load data,which... Monthly electricity consumption forecasting(ECF)plays an important role in power system operation and electricity market trading.Widespread popularity of smart meters enables collection of fine-grained load data,which provides an opportunity for improvement of monthly ECF accuracy.In this letter,a spatio-temporal granularity co-optimization-based monthly ECF framework is proposed,which aims to find an optimal combination of temporal granularity and spatial clusters to improve monthly ECF accuracy.The framework is formulated as a nested bi-layer optimization problem.A grid search method combined with a greedy clustering method is proposed to solve the optimization problem.Superiority of the proposed method has been verified on a real smart meter dataset. 展开更多
关键词 electricity consumption forecasting Greedy clustering Grid searching SPATIOTEMPORAL
原文传递
Hybrid Deep Learning Enabled Load Prediction for Energy Storage Systems
19
作者 Firas Abedi Hayder M.A.Ghanimi +8 位作者 Mohammed A.M.Sadeeq Ahmed Alkhayyat Zahraa H.Kareem Sarmad Nozad Mahmood Ali Hashim Abbas Ali S.Abosinnee Waleed Khaild Al-Azzawi Mustafa Musa Jaber Mohammed Dauwed 《Computers, Materials & Continua》 SCIE EI 2023年第5期3359-3374,共16页
Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of ... Recent economic growth and development have considerably raised energy consumption over the globe.Electric load prediction approaches become essential for effective planning,decision-making,and contract evaluation of the power systems.In order to achieve effective forecasting outcomes with minimumcomputation time,this study develops an improved whale optimization with deep learning enabled load prediction(IWO-DLELP)scheme for energy storage systems(ESS)in smart grid platform.The major intention of the IWO-DLELP technique is to effectually forecast the electric load in SG environment for designing proficient ESS.The proposed IWO-DLELP model initially undergoes pre-processing in two stages namely min-max normalization and feature selection.Besides,partition clustering approach is applied for the decomposition of data into distinct clusters with respect to distance and objective functions.Moreover,IWO with bidirectional gated recurrent unit(BiGRU)model is applied for the prediction of load and the hyperparameters are tuned by the use of IWO algorithm.The experiment analysis reported the enhanced results of the IWO-DLELP model over the recent methods interms of distinct evaluation measures. 展开更多
关键词 Load forecasting smart grid energy storage system electricity load forecasting artificial intelligence CLUSTERING
下载PDF
Explainability-based Trust Algorithm for electricity price forecasting models
20
作者 Leena Heistrene Ram Machlev +5 位作者 Michael Perl Juri Belikov Dmitry Baimel Kfir Levy Shie Mannor Yoash Levron 《Energy and AI》 2023年第4期141-158,共18页
Advanced machine learning(ML)algorithms have outperformed traditional approaches in various forecasting applications,especially electricity price forecasting(EPF).However,the prediction accuracy of ML reduces substant... Advanced machine learning(ML)algorithms have outperformed traditional approaches in various forecasting applications,especially electricity price forecasting(EPF).However,the prediction accuracy of ML reduces substantially if the input data is not similar to the ones seen by the model during training.This is often observed in EPF problems when market dynamics change owing to a rise in fuel prices,an increase in renewable penetration,a change in operational policies,etc.While the dip in model accuracy for unseen data is a cause for concern,what is more,challenging is not knowing when the ML model would respond in such a manner.Such uncertainty makes the power market participants,like bidding agents and retailers,vulnerable to substantial financial loss caused by the prediction errors of EPF models.Therefore,it becomes essential to identify whether or not the model prediction at a given instance is trustworthy.In this light,this paper proposes a trust algorithm for EPF users based on explainable artificial intelligence techniques.The suggested algorithm generates trust scores that reflect the model’s prediction quality for each new input.These scores are formulated in two stages:in the first stage,the coarse version of the score is formed using correlations of local and global explanations,and in the second stage,the score is fine-tuned further by the Shapley additive explanations values of different features.Such score-based explanations are more straightforward than feature-based visual explanations for EPF users like asset managers and traders.A dataset from Italy’s and ERCOT’s electricity market validates the efficacy of the proposed algorithm.Results show that the algorithm has more than 85%accuracy in identifying good predictions when the data distribution is similar to the training dataset.In the case of distribution shift,the algorithm shows the same accuracy level in identifying bad predictions. 展开更多
关键词 electricity price forecasting EPF Explainable AI model XAI SHAP Explainability
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部