期刊文献+
共找到56篇文章
< 1 2 3 >
每页显示 20 50 100
Harnessing overlapped temperature-salinity gradient in solar-driven interfacial seawater evaporation for efficient steam and electricity generation
1
作者 Peida Li Dongtong He +2 位作者 Jingchang Sun Jieshan Qiu Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期694-700,I0015,共8页
Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad... Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold. 展开更多
关键词 Solar-driven interfacial water evaporation Steam generation electricity generation Seawater
下载PDF
Electricity generation during wastewater treatment by a microbial fuel cell coupled with constructed wetland 被引量:13
2
作者 李先宁 宋海亮 +1 位作者 项文力 吴磊 《Journal of Southeast University(English Edition)》 EI CAS 2012年第2期175-178,共4页
A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable curr... A membrane-less constructed wetland microbial fuel cell (CW-MFC) is constructed and operated under continuous flow with a hydraulic retention time (HRT) of 2 d. Fed with glucose, the CW-MFC generates a stable current density of over 2 A/m3 with a resistor of 1 kΩ and has a chemical oxygen demand (COD) removal efficiency of more than 90% after the startup of 2 to 3 d. A series of systems with the electrode spacings of 10, 20, 30 and 40 cm are compared. It is found that the container with the electrode spacing of 20 cm gains the highest voltage of 560 mV, the highest power density of 0. 149 W/m 3, and the highest Coulombic efficiency of 0.313%. It also has the highest COD removal efficiency of 94. 9%. In addition, the dissolved oxygen (DO) concentrations are observed as the lowest level in the middle of all the CW-MFC reactors. The results show that the more COD is removed, the greater power is generated, and the relatively higher Coulombic efficiency will be achieved. The present study indicates that the CW-MFC process can be used as a cost-effective and environmentally friendly wastewater treatment with simultaneous power generation. 展开更多
关键词 constructed wetland microbial fuel cell wastewater treatment electricity generation electrode spacing
下载PDF
Environmental damage costs from fossil electricity generation in China, 2000~2003 被引量:2
3
作者 ZHANG Qing-yu WEI Yu-mei +1 位作者 CHEN Ying-xu GUO Hui 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第11期1816-1825,共10页
Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the envi... Electricity consumption increases rapidly with the rapid development of China. The environmental damage costs of electricity generation are very important for both policy analysis and the proper management of the environment. A method was developed in this work to estimate gross environmental damage costs according to emission inventory and environmental cost factors, and to extend the costs from provincial to national level with population density. In this paper, sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter less than 10 μm in diameter (PM10), and carbon dioxide (CO2) from fossil fired power plants over 6000 kW were selected as index pollutants to quantify the environmental costs of damages on human health and global warming. With the new developed method, environmental damage costs, caused by 3 types of fired power plants in 30 provinces and 6 economic sectors during the years 2000 to 2003, were evaluated and analyzed. It can be seen that the calculated total national environmental damage costs of electricity have rapidly increased from 94930.87×106 USD in 2000 to about 141041.39×106 USD in 2003, with an average annual growth rate of 14.11%. Environmental damage costs of SO2, NOx, PM10, and CO2 are 69475.69×106, 30079.29×106, 28931.84×106, and 12554.57×106 USD and account for 49.26%, 21.33%, 20.51%, and 8.90% of total environmental costs in fossil electricity generation, respectively. With regard to regional distribution, external costs caused by fossil electricity generation are mainly concentrated in the more populated and industrialized areas of China, i.e., the Eastern Central and Southeastern areas. 展开更多
关键词 Environmental damage costs Fossil electricity generation Emission inventory Uncertainty analysis
下载PDF
Development of hydraulic power unit and accumulator charging circuit for electricity generation,storage and distribution 被引量:2
4
作者 姜继海 刘海昌 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2008年第1期60-64,共5页
It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to... It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction. 展开更多
关键词 electricity generation accumulator charging circuit hydraulic accumulator energy-reutilization
下载PDF
Feasible design for electricity generation from Chlorella vulgaris using convenient photosynthetic conditions 被引量:1
5
作者 MAHMOUD MOUSTAFA TAREK TAHA +4 位作者 MOHAMED ELNOUBY M.A.ABU-SAIED ALI SHATI MOHAMED AL-KAHTANI SULAIMAN ALRUMMAN 《BIOCELL》 SCIE 2018年第1期7-11,共5页
Many recent studies are concerned with low cost,easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage.Microalgae are unicellular entities the can only depend... Many recent studies are concerned with low cost,easy to handle and alternative renewable energy as a feasible solution for the upcoming crisis of energy shortage.Microalgae are unicellular entities the can only depend on CO_(2),water and solar power to cover their nutritional needs.The current study is concerned with using algal cells in a polymeric hydrogel,as a cheap source of energy for electricity generation.Chlorella vulgaris has been proved to be a promising algal species for electricity generation,as compared with Micractinium reisseri.PVA hydrogel has been used for the immobilization of both algal species in order to protect them from the adverse surrounding conditions in addition to its ability to slowly release the required water molecules according to needs.Under these conditions,C.vulgaris showed the ability to generate 60 mV compared with 15 mV generated by M.reisseri.Scanning electron micrographs showed nano-threads that bind the C.vulgaris cells to each other,indicating the ability of algae to create nanowires that facilitate the electron transfer among algal cells and from cells to the nearest electrode.However,we would expect an increase in the produced potential with simultaneous amendment of environmentally polluted water,such as sewage or waste water.Both of FTIR and raman spectroscopy proved the presence of the characteristic groups of PVA hydrogel and proved the proper integration of the algal cells inside the hydrogel cavities. 展开更多
关键词 Chlorella vulgaris immobilization PVA hydrogel electricity generation ALGAE Microbial fuel cell(MFC)
下载PDF
Towards an Ethical and Ecological Approach to Electricity Generation: A Comparative Analysis of Coal and Nuclear Power in the USA
6
作者 Joseph R. Laracy 《Open Journal of Ecology》 2020年第6期370-379,共10页
According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coa... According to the US Energy Information Administration, about 4118 billion kilowatt-hours (kWh) electricity was generated at large-scale generation facilities in 2019. About 63% of this was from fossil fuels, e.g., coal, natural gas, petroleum, and other gases. Environmental exposure to particulates, sulfur dioxide, nitrogen oxides, mercury, arsenic, radioactive fly ash, and other pollutants are extremely detrimental to the human cardiovascular, respiratory, and nervous systems. Such exposure increases the risk of lung cancer, stroke, heart disease, chronic respiratory diseases, respiratory infections, and other illnesses. In light of the challenges associated with renewables providing large quantities of base load power, as well as other factors, the benefits offered by nuclear power should be reexamined by policy makers to move the country towards a more ecological and ethical method of electric power production. This paper offers a concise analysis of many of the salient issues, comparing electricity generation from coal plants and light water nuclear reactors. 展开更多
关键词 Nuclear Energy COAL Electric Power generation ECOLOGY Safety HEALTH
下载PDF
Technical Analysis: Generation of Electricity by Pyrolysis of Plastics in a Canadian Environment
7
作者 Krish Parikh 《Journal of Energy and Power Engineering》 2020年第5期151-155,共5页
The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts... The study takes motivation from provincial and national issues regarding waste management and electricity production in Canada.Most sources include previous research relating pyrolysis’applications in different parts of the world.The research included 2-3 weeks of extensive reading of previous research and understanding the theory relating polymers.Research has been conducted to understand why polymers have the properties that they do.Thorough analysis about the chemical reactions relating polymers on a small and large scale is conducted.More research was conducted relating to socio-economic conditions of Canada and Singapore for application purposes.Findings of the research point to an addition the Canadian government can uphold i.e.,build more plastic pyrolysis plants in different regions for waste management.Our findings also suggest that the short term spending on such projects can yield long term benefits.This research is important because it will solve Canada’s non-recyclable waste problems,it will help bring in a new source of electricity and it will help increase the budget of municipalities in the long run.This paper is not just informative on polymers,but also will help readers understand issues regarding Canadian waste management and propose possible solutions. 展开更多
关键词 Waste management energy electricity generation power
下载PDF
National Electricity Generation,Electricity Consumption and Peak Load by Grid (April 2006)
8
《Electricity》 2006年第2期49-49,共1页
Statistics on electricity generation and time of frequency over-limit;Statistics on electricity consumption and peak load.
关键词 National electricity generation electricity Consumption and Peak Load by Grid April 2006 OVER
下载PDF
National Electricity Generation,Electricity Consumption and Peak Load by Grid (March 2006)
9
《Electricity》 2006年第2期49-49,共1页
Statistics on electricity generation and time of frequency over-limit;Statistics on electricity consumption and peak load.
关键词 National electricity generation electricity Consumption and Peak Load by Grid March 2006 OVER
下载PDF
Electricity Generation,Supply and Consumption Grew Steadily,Construction Efforts of urban and Rural Power Grids Intensified──Analysis of Power Production, Construction and Society's Consumption in the First Half of This Year
10
《Electricity》 2000年第3期7-10,共4页
关键词 In Construction and Society’s Consumption in the First Half of This Year electricity generation Supply and Consumption Grew Steadily Construction Efforts of urban and Rural Power Grids Intensified Grids
下载PDF
National Accumulated Electricity Generation by Province in 2007 (as of October)
11
《Electricity》 2007年第4期51-51,共1页
关键词 as of October National Accumulated electricity generation by Province in 2007
下载PDF
Electricity generation grew steadily
12
《Electricity》 1996年第3期31-31,共1页
In the first half of 1996, electricity generation in China had steadily, grown with a total electricity generation accumulated to 508.3 TWh, it was 47.5% of the planned figure in the year, and 8.3% higher than the sam... In the first half of 1996, electricity generation in China had steadily, grown with a total electricity generation accumulated to 508.3 TWh, it was 47.5% of the planned figure in the year, and 8.3% higher than the same period of previous year. Among the generation, hydro-electricity amounted to 78.2 TWh, 5.39% lower than previous year, thermal electricity amounted to 424.55 TWh, 10.87% higher than previous year, nuclear electricity amounted to 5.52 TWh, 47.15% higher than previous year. The steady growth of thermal electricity might attribute to newly installed generating capacity in one hand, and the 展开更多
关键词 THAN electricity generation grew steadily
下载PDF
National Accumulated Electricity Generation by Province in 2006 (as of June)
13
《Electricity》 2006年第3期53-53,共1页
关键词 National Accumulated electricity generation by Province in 2006 as of June
下载PDF
Promoting and controlling electron transfer of furfural oxidation efficiently harvest electricity,furoic acid,hydrogen gas and hydrogen peroxide
14
作者 Denghao Ouyang Daihong Gao +2 位作者 Jinpeng Hong Zhao Jiang Xuebing Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期135-147,共13页
Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidatio... Conventional chemical oxidation of aldehydes such as furfural to corresponding acids by molecular oxygen usually needs high pressure to increase the solubility of oxygen in aqueous phase,while electrochemical oxidation needs input of external electric energy.Herein,we developed a liquid flow fuel cell(LFFC)system to achieve oxidation of furfural in anode for furoic acid production with co-production of hydrogen gas.By controlling the electron transfer in cathode for reduction of oxygen,efficient generation of electricity or production of H_(2)O_(2)were achieved.Metal oxides especially Ag_(2)O have been screened as the efficient catalyst to promote the oxidation of aldehydes,while liquid redox couples were used for promoting the kinetics of oxygen reduction.A novel alkaline-acidic asymmetric design was also used for anolyte and catholyte,respectively,to promote the efficiency of electron transfer.Such an LFFC system achieves efficient conversion of chemical energy of aldehyde oxidation to electric energy and makes full use the transferred electrons for high-value added products without input of external energy.With(VO_(2))_(2)SO_(4)as the electron carrier in catholyte for four-electron reduction of oxygen,the peak output power density(Pmax)at room temperature reached 261 mW/cm^(2)with furoic acid and H_(2)yields of 90%and 0.10 mol/mol furfural,respectively.With anthraquinone-2-sulfonate(AQS)as the cathodic electron carrier,Pmaxof 60 mW/cm^(2)and furoic acid,H_(2)and H_(2)O_(2)yields of 0.88,0.15 and 0.41 mol/mol furfural were achieved,respectively.A new reaction mechanism on furfural oxidation on Ag_(2)O anode was proposed,referring to one-electron and two-electron reaction pathways depending on the fate of adsorbed hydrogen atom transferred from furfural aldehyde group. 展开更多
关键词 Oxidation of furfural Liquid flow fuel cell electricity generation Hydrogen production Electron transfer
下载PDF
Electricity Generation and the Present Challenges in the Nigerian Power Sector
15
作者 Abuabkar Sani Sambo Bashir Garba +1 位作者 Ismaila Haliru Zarma Mohammed Musa Gaji 《Journal of Energy and Power Engineering》 2012年第7期1050-1059,共10页
National development requires adequate electricity supply of which all activities--generation, transmission and distribution leading to it are capital-intensive in terms of funds, natural and human resources. The dwin... National development requires adequate electricity supply of which all activities--generation, transmission and distribution leading to it are capital-intensive in terms of funds, natural and human resources. The dwindling power sector government funding coupled with low private sector participation and weak level political will require creative and innovative solutions in addressing the power supply problem in Nigeria. Hence, this paper seeks to examine power sector privatization as a viable option. 展开更多
关键词 Energy resources electricity generation POWER DEVELOPMENT demand and supply.
下载PDF
Electricity Generation by Solar Energy in Turkey: Current State and Outlook
16
作者 Hasan Yildizhan Mecit Sivrioglu 《Journal of Energy and Power Engineering》 2015年第12期1093-1100,共8页
Turkey is in good condition in terms of solar energy because of the fact that, Turkey falls in between 40 degree North and 40 degree South latitude which is called as "sunbelt". The potential of producing electric f... Turkey is in good condition in terms of solar energy because of the fact that, Turkey falls in between 40 degree North and 40 degree South latitude which is called as "sunbelt". The potential of producing electric from solar energy is very high in terms of potential of Turkey. According to a report by the Turkish Energy Ministry, Turkey's average rate of electrical energy consumption increased to levels 5.59 in the last 11 years. Moreover, solar energy may be primary energy source on account of the fact that, Turkey is in the position of a country importing energy and has signed Kyoto Protocol of carbon emission to atmosphere. The aim of the article is to give information about acts need to be done and present policies of Turkey on producing electric from solar energy. Beyond question, the policies of the government will determine the direction of developmental momentum of energy industry in Turkey as whole world will. The present support to production of electric from solar energy is not enough, so it is needed to give much higher level of support to this sector. In this context, it is essential to enhance guarantied tariff cost and the power of unlicensed electric production. 展开更多
关键词 Solar energy INCENTIVES electricity generation TURKEY
下载PDF
CO2 Emission from Electricity Generation in Malaysia: A Decomposition Analysis
17
作者 Maryam Huda Keiichi Okajima Kengo Suzuki 《Journal of Energy and Power Engineering》 2017年第12期779-788,共10页
In tenth Malaysian Plan, Malaysian government had voluntarily targeted to reduce its emission intensity to 40% compared to the 2005 level by the year 2020 and recently re-pledge to reduce more and declared for 45% emi... In tenth Malaysian Plan, Malaysian government had voluntarily targeted to reduce its emission intensity to 40% compared to the 2005 level by the year 2020 and recently re-pledge to reduce more and declared for 45% emission reduction by 2030. Looking at the country's high dependency to the fossil fuel generation it is a high concern on the increasing CO2 emission in Malaysia. This paper intends to analyze the current status of CO2 emissions from electricity generation in Malaysia during the period 1992-2014 by applying the LMDI (logarithmic mean Divisia index) technique to find the nature of the factors influencing the changes in CO2 emissions. The decomposition analysis observed three biggest factors contributed to the reduction of CO2 emission throughout the period which is thermal generation effect, electricity generation efficiency effect and electricity structure effect. 展开更多
关键词 Decomposition analysis LMDI CO2 emission electricity generation.
下载PDF
Electricity Storage With High Roundtrip Efficiency in a Reversible Solid Oxide Cell Stack 被引量:1
18
作者 甘丽珍 谢奎 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2016年第4期517-522,I0002,共7页
We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to ge... We theoretically investigate the electricity storage/generation in a reversible solid oxide cell stack. The system heat is for the first time tentatively stored in a phase-change metal when the stack is operated to generate electricity in a fuel cell mode and then reused to store electricity in an electrolysis mode. The state of charge (H2 frication in cathode) effectively enhances the open circuit voltages (OCVs) while the system gas pressure in electrodes also increases the OCVs. On the other hand, a higher system pressure facilitates the species diffusion in electrodes that therefore accordingly improve electrode polarizations. With the aid of recycled system heat, the roundtrip efficiency reaches as high as 92% for the repeated electricity storage and generation. 展开更多
关键词 Reversible solid oxide cell State of charge Heat storage electricity storage electricity generation
下载PDF
Insights into the role of oxygen-containing functional groups on carbon surface in water–electricity generation
19
作者 Wan Xue Zongbin Zhao +3 位作者 Honghui Bi Bolun Zhang Xuzhen Wang Jieshan Qiu 《Nano Research》 SCIE EI CSCD 2024年第7期6645-6653,共9页
A deep understanding of the electricity generation mechanism from the interaction between water molecules and carbon material surfaces is attractive for next-generation water-based energy conversion and storage system... A deep understanding of the electricity generation mechanism from the interaction between water molecules and carbon material surfaces is attractive for next-generation water-based energy conversion and storage systems.Herein,an asymmetric generator was assembled based on functionalized carbon nanotubes films to investigate the relative contribution from various oxygen functional groups on carbon surface to the water-electrical performance.Experiments and calculations demonstrate that the electricity mainly originates from the water molecule adsorption by carboxyl groups and dissociation of functional groups on carbon surface,which leads to the formation of electrical double layers at interfaces.This device allows the electricity generation with a variety of water sources,such as deionized water,tap water,as well as seawater.In particular,the generator based on carboxyl carbon nanotubes can induce a voltage of over 200 mV spontaneously in natural seawater with the power density of about 0.11 mW·g^(−1).High voltages can be achieved easily through the series-connection strategy to power electronic products such as a liquid crystal display.This work reveals the dominant role of carboxyl groups in carbon-based water–electricity conversion and is expected to offer inspiration for the preparation of carbon materials with high electrical performance. 展开更多
关键词 electricity generation water adsorption DISSOCIATION carboxyl groups carbon nanotubes
原文传递
Solar evaporation for simultaneous oil-water separation and electricity generation with Janus wood-based absorbers
20
作者 Yue Yang Ze Fu Qi Zhang 《Frontiers of Environmental Science & Engineering》 SCIE EI CSCD 2024年第2期13-23,共11页
Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar phototherm... Oily wastewater from ocean oil spills endangers marine ecosystems and human health. Therefore, developing an effective and sustainable solution for separating oil-water mixtures is urgent. Interfacial solar photothermal evaporation is a promising approach for the complete separation of two-phase mixtures using only solar energy. Herein, we report a carbonized wood-based absorber with Janus structure of comprising a hydrophobic top-layer and an oleophobic bottom-layer for simultaneous solar-driven oil-water separation and electricity generation. Under sunlight irradiation, the rapid evaporation of seawater will induce a separation of oil-water mixtures, and cause a high salt concentration region underlying the interface, while the bottom “bulk water” maintains in a low salt concentration, thus forming a salinity gradient. Electricity can be generated by salinity gradient power. Therefore, oil-water separation efficiency of > 99% and derived extra electricity power of ~0.1 W/m2 is achieved under solar radiation, demonstrating the feasibility of oil-water separation and electricity production synchronously directly using solar energy. This work provides a green and cost-effective path for the separation of oil-water mixtures. 展开更多
关键词 Oily wastewater Carbonized wood Salinity gradient electricity generation Solar irradiation
原文传递
上一页 1 2 3 下一页 到第
使用帮助 返回顶部