With the deepening of China’s power market, bilateral transactions will continue to grow in large scale. The release of bilateral transactions locked more regulatory resources of the power grid, will directly affect ...With the deepening of China’s power market, bilateral transactions will continue to grow in large scale. The release of bilateral transactions locked more regulatory resources of the power grid, will directly affect the operation mode of the unit and the implementation of planned electricity. In the paper, considering the large-scale bilateral trade effect on the peak regulation of power grid, energy saving and emission reduction, power system security and other factors, and then putting forward the method of long term generation planning and annual planning model to adapt to the safe operation of power grid in China. In the model, the target is minimizing the monthly load rate deviation and the annual electric quantity deviation rate, the latter includes the capacity factor. In addition, the constraints include the monthly quantity of electricity, adjustable utilization rate deviation, load rate, reserve and key sections, etc. Through an example to verify the correctness of the model, the planning and power transaction results can satisfy the peak regulation of load, energy saving and emission reduction and safety operation of the power grid requirements.展开更多
The Multi Year Tariff Order (MYTO) is the Nigerian Electricity Regulatory Commission (NERC) pricing framework for determining the Nigerian Electricity Supply Industry (NESI) pricing model. One of the objectives of the...The Multi Year Tariff Order (MYTO) is the Nigerian Electricity Regulatory Commission (NERC) pricing framework for determining the Nigerian Electricity Supply Industry (NESI) pricing model. One of the objectives of the NERC’s MYTO pricing model is to ensure regulated electricity end user tariff without compromising return on investment. Achieving this objective is imperative to attract investors in the growing Nigerian electricity market. However, NESI has hitherto been faced with challenges ranging from its inability to provide sufficient power to its customers to not being viable enough to provide return on capital invested. In this paper, sensitivity analysis of power plant operation and performance parameters on the cost of electricity (CoE) generation using MYTO (power generation) pricing model were evaluated. Thermodynamic modeling and simulation of an open cycle gas turbine (OCGT) was carried out to augment scarce data on power plant performance and operation in Nigeria. Sensitivity analysis was carried out using probabilistic method based on Monte Carlo simulation (MCS) implemented in commercial software (@ Risk®). The result highlighted sensitivity of the model input parameters to cost of electricity generation based on technical and financial assumptions of MYTO model. Seven most influential parameters affecting generation cost were identified. These parameters and their correlation coefficients are given as: 1) foreign exchange rate, 0.76;2) cost of fuel, 0.51;3) thermal efficiency, -0.23;4) variable operation and maintenance cost, 0.22;5) fixed operating and maintenance cost, -0.03;6) capacity factor, -0.02;and 7) average capacity degradation, 0.01. Based on the gas turbine engine and input parameter distributions statistics for this study, the generation cost lies between 9.84 to 15.45 N/kWh and the probabilities of CoE within these values were established.展开更多
An electricity market is a trading platform provided by the actors in the electricity sector to sell and buy electricity while maintaining the stability of the transmission network and minimizing energy losses.The man...An electricity market is a trading platform provided by the actors in the electricity sector to sell and buy electricity while maintaining the stability of the transmission network and minimizing energy losses.The management of electrical energy for rational use consists of all the operations that the consumers can carry out in order to minimize their electricity bill,while the producers optimize their benefits and the transmission infrastructure.The reduction of active and reactive power consumption and the smoothing of daily and yearly load profiles are the main objectives in this work.Many developed countries already have properly functioning electricity markets,but developing countries are still in their infancy of deregulated electricity markets.The major tools used in smoothing the load profiles include decentralized generation,energy storage and demand response.A load power smoothing control strategy is proposed to smooth the load power fluctuations of the distribution network.The required power change is determined by evaluating the power fluctuation rate of the load,and then the required power change is allocated to some generators or to some stored reserves.Otherwise,the consumers are made to curtail their power consumption.The ideas proposed in this work provide important opportunities for energy policy makers and regulators.These ideas would only be feasible if there exists real-time communication among the actors in the electricity market.The results indicate that as much as 1100 Megawatt-hours of energy can be stored for smoothing the load profile,when applied to the Southern Interconnected Grid of the Cameroon power system;and that Time of Use(TOU)pricing could be used instead of rotating blackouts in case of energy shortage.展开更多
Stochastic optimization can be used to generate optimal bidding strategies for virtual bidders in which the uncertain electricity prices are represented by using scenarios.This paper proposes a hybrid scenario generat...Stochastic optimization can be used to generate optimal bidding strategies for virtual bidders in which the uncertain electricity prices are represented by using scenarios.This paper proposes a hybrid scenario generation method for electricity price using a seasonal autoregressive integrated moving average(SARIMA)model and historical data.The electricity price spikes are first identified by using an outlier detection method.Then,the historical data are decomposed into base and spike components.Next,the base and spike component scenarios are generated by using the SARIMA-and historical data-based methods,respectively.Finally,the electricity price scenarios are obtained by combining the base and spike component scenarios.Case studies are carried out for a virtual bidder in the PJM electricity market to validate the proposed method.The optimal bidding strategies of the virtual bidder are generated by solving a stochastic optimization problem using the electricity price scenarios generated by the proposed method,the SARIMA method,and a historical data-based method,respectively.Case study results show that the proposed method is better than the SARIMA method in preserving statistical properties of the electricity price in the generated scenarios and is better than the historical data-based method in predicting the future trend of the electricity price and,therefore,can help the virtual bidder earn more profit in the electricity market.展开更多
In order to achieve the compatibility of the air conditioning(AC)loads with the current dispatch models,this pa-per utilizes demand response(DR)technology as energy storage resources to optimize the aggregator’s beha...In order to achieve the compatibility of the air conditioning(AC)loads with the current dispatch models,this pa-per utilizes demand response(DR)technology as energy storage resources to optimize the aggregator’s behaviors in the real-time market for less economic loss caused by the fluctuations of wind power.The inverter AC,as a typical demand response resource,is constructed as a power type battery model(PTBM)and a capacity type battery model(CTBM)according to the different control methods,which are expressed through a circuit model and mathematical model to describe the energy storage characteristics of ACs.Moreover,the comparisons between the PTBM and CTBM are given analytically by their response speed,power&energy capacity and the cost of control,which will be helpful to guide the associated operators to choose the appropriate models to take part in demand response.Considering that the wind generation fluctuates frequently and greatly,the PTBM is chosen to take part of the demand response for output optimizing of the wind generation.The simulation results demonstrate that PTBMs can work in the way of conventional batteries(CBs)to optimize wind generation in the real-time market.展开更多
Large-scale hybrid power plants, composed of two or more generation sources and with the participation of energy storage systems, have driven important electricity Market Design regulation discussions worldwide. Regul...Large-scale hybrid power plants, composed of two or more generation sources and with the participation of energy storage systems, have driven important electricity Market Design regulation discussions worldwide. Regulatory framework ought to be adapted to support technical particularities of these new generation arranges. This paper presents an assessment of the main requirements to be met by Market Design to enable hybrid power plants by means of assertive market incentives. Assessing regulatory adjustments promoted in Australia, United States, India, China, and Brazil, emphasizing the latter one, the authors presents a case study by applying specific computational simulation and optimization model to a hybrid Hydro-Solar plant, that supports the findings for the necessary evolution needed in the national regulatory framework in order to enable hybrid projects. The evaluation of international experiences indicates that the insertion of hybrid projects is associated with the design of the market they belong to and demand regulatory adjustments so that their attributes can be properly valued for the benefit of all stakeholders, especially for the electricity consumer.展开更多
Deregulation and liberalization of electric power industry, among other things, has created new requirements for the market participants. The power system engineer, operator, and, in general, the market participants a...Deregulation and liberalization of electric power industry, among other things, has created new requirements for the market participants. The power system engineer, operator, and, in general, the market participants are being faced with requirements for which they do not have adequate training and the proper software tools. In this framework, among others, a pure hydro-generation company has to operate its hydro units, throughout the operating day, trying to fulfill the market clearing schedule or a bilateral contract, and modify the program in the intra-day energy markets if necessary (or more suitable) as real-time operation is getting closer. In this scenario the objective is to maximize the hydroelectric power plant profit from selling energy in the spot market or by means of bilateral contracts. In this paper the optimal operation of a head-dependent hydroelectric power station in bilateral market-short-term hourly hydro resource scheduling for energy is obtained.展开更多
The increasing interdependency of electricity and natural gas systems promotes coordination of the two systems for ensuring operational security and economics.This paper proposes a robust day-ahead scheduling model fo...The increasing interdependency of electricity and natural gas systems promotes coordination of the two systems for ensuring operational security and economics.This paper proposes a robust day-ahead scheduling model for the optimal coordinated operation of integrated energy systems while considering key uncertainties of the power system and natural gas system operation cost. Energy hub,with collocated gas-fired units, power-to-gas(Pt G) facilities, and natural gas storages, is considered to store or convert one type of energy(i.e., electricity or natural gas)into the other form, which could analogously function as large-scale electrical energy storages. The column-andconstraint generation(C&CG) is adopted to solve the proposed integrated robust model, in which nonlinear natural gas network constraints are reformulated via a set of linear constraints. Numerical experiments signify the effectiveness of the proposed model for handling volatile electrical loads and renewable generations via the coordinated scheduling of electricity and natural gas systems.展开更多
以安全、潜力和期望(security,potential and aspiration,SP/A)风险决策理论为基础,该文对发电公司面对风险决策时应该考虑的因素进行了分析和数学描述,其中在报价方案潜力性的分析上有效地结合了经济学中机会成本理论。在此基础上,考...以安全、潜力和期望(security,potential and aspiration,SP/A)风险决策理论为基础,该文对发电公司面对风险决策时应该考虑的因素进行了分析和数学描述,其中在报价方案潜力性的分析上有效地结合了经济学中机会成本理论。在此基础上,考虑发电公司自身发电计划约束,建立起一种发电公司计及风险因素的竞价决策模型,并结合矩阵实数编码遗传算法(matrix real-coded genetic algorithm,MRCGA)对该模型的优化求解进行了探讨。该文所建的竞价决策模型既考虑了自身发电计划安排,又顾及了在面对风险发电公司竞价决策时应该考虑的一些因素,因此模型比较贴近于实际的发电竞价情况。通过算例的模拟分析表明,文中所提出的基于SP/A的发电公司竞价决策模型是合理的,其求解方法也是切实可行的。展开更多
文摘With the deepening of China’s power market, bilateral transactions will continue to grow in large scale. The release of bilateral transactions locked more regulatory resources of the power grid, will directly affect the operation mode of the unit and the implementation of planned electricity. In the paper, considering the large-scale bilateral trade effect on the peak regulation of power grid, energy saving and emission reduction, power system security and other factors, and then putting forward the method of long term generation planning and annual planning model to adapt to the safe operation of power grid in China. In the model, the target is minimizing the monthly load rate deviation and the annual electric quantity deviation rate, the latter includes the capacity factor. In addition, the constraints include the monthly quantity of electricity, adjustable utilization rate deviation, load rate, reserve and key sections, etc. Through an example to verify the correctness of the model, the planning and power transaction results can satisfy the peak regulation of load, energy saving and emission reduction and safety operation of the power grid requirements.
文摘The Multi Year Tariff Order (MYTO) is the Nigerian Electricity Regulatory Commission (NERC) pricing framework for determining the Nigerian Electricity Supply Industry (NESI) pricing model. One of the objectives of the NERC’s MYTO pricing model is to ensure regulated electricity end user tariff without compromising return on investment. Achieving this objective is imperative to attract investors in the growing Nigerian electricity market. However, NESI has hitherto been faced with challenges ranging from its inability to provide sufficient power to its customers to not being viable enough to provide return on capital invested. In this paper, sensitivity analysis of power plant operation and performance parameters on the cost of electricity (CoE) generation using MYTO (power generation) pricing model were evaluated. Thermodynamic modeling and simulation of an open cycle gas turbine (OCGT) was carried out to augment scarce data on power plant performance and operation in Nigeria. Sensitivity analysis was carried out using probabilistic method based on Monte Carlo simulation (MCS) implemented in commercial software (@ Risk®). The result highlighted sensitivity of the model input parameters to cost of electricity generation based on technical and financial assumptions of MYTO model. Seven most influential parameters affecting generation cost were identified. These parameters and their correlation coefficients are given as: 1) foreign exchange rate, 0.76;2) cost of fuel, 0.51;3) thermal efficiency, -0.23;4) variable operation and maintenance cost, 0.22;5) fixed operating and maintenance cost, -0.03;6) capacity factor, -0.02;and 7) average capacity degradation, 0.01. Based on the gas turbine engine and input parameter distributions statistics for this study, the generation cost lies between 9.84 to 15.45 N/kWh and the probabilities of CoE within these values were established.
文摘An electricity market is a trading platform provided by the actors in the electricity sector to sell and buy electricity while maintaining the stability of the transmission network and minimizing energy losses.The management of electrical energy for rational use consists of all the operations that the consumers can carry out in order to minimize their electricity bill,while the producers optimize their benefits and the transmission infrastructure.The reduction of active and reactive power consumption and the smoothing of daily and yearly load profiles are the main objectives in this work.Many developed countries already have properly functioning electricity markets,but developing countries are still in their infancy of deregulated electricity markets.The major tools used in smoothing the load profiles include decentralized generation,energy storage and demand response.A load power smoothing control strategy is proposed to smooth the load power fluctuations of the distribution network.The required power change is determined by evaluating the power fluctuation rate of the load,and then the required power change is allocated to some generators or to some stored reserves.Otherwise,the consumers are made to curtail their power consumption.The ideas proposed in this work provide important opportunities for energy policy makers and regulators.These ideas would only be feasible if there exists real-time communication among the actors in the electricity market.The results indicate that as much as 1100 Megawatt-hours of energy can be stored for smoothing the load profile,when applied to the Southern Interconnected Grid of the Cameroon power system;and that Time of Use(TOU)pricing could be used instead of rotating blackouts in case of energy shortage.
基金supported in part by the Nebraska Public Power District through the Nebraska Center for Energy Sciences Research。
文摘Stochastic optimization can be used to generate optimal bidding strategies for virtual bidders in which the uncertain electricity prices are represented by using scenarios.This paper proposes a hybrid scenario generation method for electricity price using a seasonal autoregressive integrated moving average(SARIMA)model and historical data.The electricity price spikes are first identified by using an outlier detection method.Then,the historical data are decomposed into base and spike components.Next,the base and spike component scenarios are generated by using the SARIMA-and historical data-based methods,respectively.Finally,the electricity price scenarios are obtained by combining the base and spike component scenarios.Case studies are carried out for a virtual bidder in the PJM electricity market to validate the proposed method.The optimal bidding strategies of the virtual bidder are generated by solving a stochastic optimization problem using the electricity price scenarios generated by the proposed method,the SARIMA method,and a historical data-based method,respectively.Case study results show that the proposed method is better than the SARIMA method in preserving statistical properties of the electricity price in the generated scenarios and is better than the historical data-based method in predicting the future trend of the electricity price and,therefore,can help the virtual bidder earn more profit in the electricity market.
基金This work was supported in part by the National High Technology Research and Development Program of China(863 Program Grant No.2015AA050401)and in part by the National Science Foundation of China(Grant No.51577029)and the State Grid Corporation of China Program Research on Demand Response Mechanism and Implementation Technology facing the Electricity Marketization,and the Shanghai Power Company Project(Grant No.52096016000J).
文摘In order to achieve the compatibility of the air conditioning(AC)loads with the current dispatch models,this pa-per utilizes demand response(DR)technology as energy storage resources to optimize the aggregator’s behaviors in the real-time market for less economic loss caused by the fluctuations of wind power.The inverter AC,as a typical demand response resource,is constructed as a power type battery model(PTBM)and a capacity type battery model(CTBM)according to the different control methods,which are expressed through a circuit model and mathematical model to describe the energy storage characteristics of ACs.Moreover,the comparisons between the PTBM and CTBM are given analytically by their response speed,power&energy capacity and the cost of control,which will be helpful to guide the associated operators to choose the appropriate models to take part in demand response.Considering that the wind generation fluctuates frequently and greatly,the PTBM is chosen to take part of the demand response for output optimizing of the wind generation.The simulation results demonstrate that PTBMs can work in the way of conventional batteries(CBs)to optimize wind generation in the real-time market.
文摘Large-scale hybrid power plants, composed of two or more generation sources and with the participation of energy storage systems, have driven important electricity Market Design regulation discussions worldwide. Regulatory framework ought to be adapted to support technical particularities of these new generation arranges. This paper presents an assessment of the main requirements to be met by Market Design to enable hybrid power plants by means of assertive market incentives. Assessing regulatory adjustments promoted in Australia, United States, India, China, and Brazil, emphasizing the latter one, the authors presents a case study by applying specific computational simulation and optimization model to a hybrid Hydro-Solar plant, that supports the findings for the necessary evolution needed in the national regulatory framework in order to enable hybrid projects. The evaluation of international experiences indicates that the insertion of hybrid projects is associated with the design of the market they belong to and demand regulatory adjustments so that their attributes can be properly valued for the benefit of all stakeholders, especially for the electricity consumer.
文摘Deregulation and liberalization of electric power industry, among other things, has created new requirements for the market participants. The power system engineer, operator, and, in general, the market participants are being faced with requirements for which they do not have adequate training and the proper software tools. In this framework, among others, a pure hydro-generation company has to operate its hydro units, throughout the operating day, trying to fulfill the market clearing schedule or a bilateral contract, and modify the program in the intra-day energy markets if necessary (or more suitable) as real-time operation is getting closer. In this scenario the objective is to maximize the hydroelectric power plant profit from selling energy in the spot market or by means of bilateral contracts. In this paper the optimal operation of a head-dependent hydroelectric power station in bilateral market-short-term hourly hydro resource scheduling for energy is obtained.
基金supported in part by the U.S.National Science Foundation Grant(No.CMMI-1635339)
文摘The increasing interdependency of electricity and natural gas systems promotes coordination of the two systems for ensuring operational security and economics.This paper proposes a robust day-ahead scheduling model for the optimal coordinated operation of integrated energy systems while considering key uncertainties of the power system and natural gas system operation cost. Energy hub,with collocated gas-fired units, power-to-gas(Pt G) facilities, and natural gas storages, is considered to store or convert one type of energy(i.e., electricity or natural gas)into the other form, which could analogously function as large-scale electrical energy storages. The column-andconstraint generation(C&CG) is adopted to solve the proposed integrated robust model, in which nonlinear natural gas network constraints are reformulated via a set of linear constraints. Numerical experiments signify the effectiveness of the proposed model for handling volatile electrical loads and renewable generations via the coordinated scheduling of electricity and natural gas systems.