期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Research on the optimization strategy of customers’electricity consumption based on big data 被引量:1
1
作者 Jiangping Liu Zong Wang +3 位作者 Hui Hu Shaoxiang Xu Jiabin Wang Ying Liu 《Global Energy Interconnection》 EI CSCD 2023年第3期273-284,共12页
Current power systems face significant challenges in supporting large-scale access to new energy sources,and the potential of existing flexible resources needs to be fully explored from the power supply,grid,and custo... Current power systems face significant challenges in supporting large-scale access to new energy sources,and the potential of existing flexible resources needs to be fully explored from the power supply,grid,and customer perspectives.This paper proposes a multi-objective electricity consumption optimization strategy considering the correlation between equipment and electricity consumption.It constructs a multi-objective electricity consumption optimization model that considers the correlation between equipment and electricity consumption to maximize economy and comfort.The results show that the proposed method can accurately assess the potential for electricity consumption optimization and obtain an optimal multi-objective electricity consumption strategy based on customers’actual electricity consumption demand. 展开更多
关键词 Big data electricity consumption optimization Load elasticity electricity consumption relevance
下载PDF
Enhancing Renewable Energy Integration:A Gaussian-Bare-Bones Levy Cheetah Optimization Approach to Optimal Power Flow in Electrical Networks
2
作者 Ali S.Alghamdi Mohamed A.Zohdy Saad Aldoihi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1339-1370,共32页
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n... In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids. 展开更多
关键词 Renewable energy integration optimal power flow stochastic renewable energy sources gaussian-bare-bones levy cheetah optimizer electrical network optimization carbon tax optimization
下载PDF
Metaheuristic-Driven Two-Stage Ensemble Deep Learning for Lung/Colon Cancer Classification
3
作者 Pouyan Razmjouei Elaheh Moharamkhani +2 位作者 Mohamad Hasanvand Maryam Daneshfar Mohammad Shokouhifar 《Computers, Materials & Continua》 SCIE EI 2024年第9期3855-3880,共26页
This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and impro... This study investigates the application of deep learning,ensemble learning,metaheuristic optimization,and image processing techniques for detecting lung and colon cancers,aiming to enhance treatment efficacy and improve survival rates.We introduce a metaheuristic-driven two-stage ensemble deep learning model for efficient lung/colon cancer classification.The diagnosis of lung and colon cancers is attempted using several unique indicators by different versions of deep Convolutional Neural Networks(CNNs)in feature extraction and model constructions,and utilizing the power of various Machine Learning(ML)algorithms for final classification.Specifically,we consider different scenarios consisting of two-class colon cancer,three-class lung cancer,and fiveclass combined lung/colon cancer to conduct feature extraction using four CNNs.These extracted features are then integrated to create a comprehensive feature set.In the next step,the optimization of the feature selection is conducted using a metaheuristic algorithm based on the Electric Eel Foraging Optimization(EEFO).This optimized feature subset is subsequently employed in various ML algorithms to determine the most effective ones through a rigorous evaluation process.The top-performing algorithms are refined using the High-Performance Filter(HPF)and integrated into an ensemble learning framework employing weighted averaging.Our findings indicate that the proposed ensemble learning model significantly surpasses existing methods in classification accuracy across all datasets,achieving accuracies of 99.85%for the two-class,98.70%for the three-class,and 98.96%for the five-class datasets. 展开更多
关键词 Lung cancer colon cancer feature selection electric eel foraging optimization deep learning ensemble learning
下载PDF
Improved Generative Adversarial Behavioral Learning Method for Demand Response and Its Application in Hourly Electricity Price Optimization 被引量:1
4
作者 Junhao Lin Yan Zhang Shuangdie Xu 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2022年第5期1358-1373,共16页
In response to the imbalance between power generation and demand, demand response(DR) projects are vigorously promoted. However, customers’ DR behaviors are still difficult to be simulated accurately and objectively.... In response to the imbalance between power generation and demand, demand response(DR) projects are vigorously promoted. However, customers’ DR behaviors are still difficult to be simulated accurately and objectively. To tackle this challenge, we propose a new DR behavioral learning method based on a generative adversary network to learn customers’ DR habits. The proposed method is also extended to maximize the economic revenues of generated DR policies on the premise of obeying customers’ DR habits, which is hard to be realized simultaneously by existing model-based methods and traditional learning-based methods. To further consider customers’ timevarying DR patterns and trace the changes dynamically, we define customers’ DR participation positivity as an indicator of their DR pattern and propose a condition regulation approach improving the natural generative adversary framework to generate DR policies conforming to customers’ current DR patterns. The proposed method is applied to hourly electricity price optimization to reduce the fluctuation of system aggregate loads. An online parameter updating method is also utilized to train the proposed behavioral learning model in continuous DR simulations during electricity price optimization. Finally, numerical simulations are conducted to verify the effectiveness and superiority of the proposed method. 展开更多
关键词 Demand response behavioral learning reinforcement learning generative adversarial network electricity price optimization
原文传递
Analysis of torque transmitting behavior and wheel slip prevention control during regenerative braking for high speed EMU trains 被引量:4
5
作者 Kun Xu Guo-Qing Xu Chun-Hua Zheng 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2016年第2期244-251,共8页
The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recover... The wheel-rail adhesion control for regenerative braking systems of high speed electric multiple unit trains is crucial to maintaining the stability,improving the adhesion utilization,and achieving deep energy recovery.There remain technical challenges mainly because of the nonlinear,uncertain,and varying features of wheel-rail contact conditions.This research analyzes the torque transmitting behavior during regenerative braking,and proposes a novel methodology to detect the wheel-rail adhesion stability.Then,applications to the wheel slip prevention during braking are investigated,and the optimal slip ratio control scheme is proposed,which is based on a novel optimal reference generation of the slip ratio and a robust sliding mode control.The proposed methodology achieves the optimal braking performancewithoutthewheel-railcontactinformation.Numerical simulation results for uncertain slippery rails verify the effectiveness of the proposed methodology. 展开更多
关键词 High speed electric multiple unit(EMU) train Regenerative braking Wheel-rail adhesion Optimal slip ratio
下载PDF
Economic Assessment of Standby Diesel Generator for Peak Reduction in Commercial and Industrial Buildings:A Case Study in Malaysia
6
作者 Kein Huat Chua Yun Seng Lim Jee Xiong Chew 《Journal of Electronic Science and Technology》 CAS CSCD 2017年第4期400-406,共7页
This paper outlines the barriers and potential benefits of using standby diesel generators in mitigating the peak demands for commercial and industrial customers. The feasibility of utilizing the standby diesel genera... This paper outlines the barriers and potential benefits of using standby diesel generators in mitigating the peak demands for commercial and industrial customers. The feasibility of utilizing the standby diesel generators to reduce the electricity bills for customers is carried out by using the hybrid optimization model for electric renewable(HOMER)software. The size of the standby diesel generator and its operational duration are determined based on the lowest cost of electricity obtained from the evaluations. The economic assessments demonstrate that there is potential to reduce the electricity bills for commercial and industrial customers under the existing fuel price and tariffs. The commercial customers under the tariff C2 have the highest potential to save their electricity bills with the use of standby diesel generators for peak reduction. This study demonstrates the potential of the standby diesel generators in peak reduction. 展开更多
关键词 Commercial and industrial customers cost of electricity hybrid optimization model for electric renewable(HOMER) peak reduction standby diesel generator
下载PDF
Energy cost minimization through optimization of EV, home and workplace battery storage 被引量:3
7
作者 ZHONG QianWen BUCKLEY Stephen +1 位作者 VASSALLO Anthony SUN YiZe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2018年第5期761-773,共13页
Besides grid-to-vehicle(G2 V) and vehicle-to-grid(V2 G) functions, the battery of an electric vehicle(EV) also has the specific feature of mobility. This means that EVs not only have the potential to utilize the stora... Besides grid-to-vehicle(G2 V) and vehicle-to-grid(V2 G) functions, the battery of an electric vehicle(EV) also has the specific feature of mobility. This means that EVs not only have the potential to utilize the storage of cheap electricity for use in high energy price periods, but can also transfer energy from one place to another place. Based on these special features of an EV battery, a new EV energy scheduling method has been developed and is described in this article. The approach is aimed at optimizing the utilization EV energy for EVs that are regularly used in multiple places. The objective is to minimize electricity costs from multiple meter points. This work applies real data in order to analyze the effectiveness of the method. The results show that by applying the control strategy presented in this paper at locations where the EVs are parked, the electricity cost can be reduced without shifting the demand and lowering customer's satisfaction. The effects of PV size and number of EVs on our model are also analyzed in this paper. This model has the potential to be used by energy system designers as a new perspective to determine optimal sizes of generators or storage devices in energy systems. 展开更多
关键词 electric vehicle electric vehicle(EV) optimization energy management storage battery vehicle to grid(V2G)
原文传递
Energy Management Strategy for Hybrid Electric Vehicle Based on System Efficiency and Battery Life Optimization
8
作者 YANG Yang SU Ling +2 位作者 QIN Datong GONG Hui ZENG Jianfeng 《Wuhan University Journal of Natural Sciences》 CAS 2014年第3期269-276,共8页
A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal... A novel method to calculate fuel-electric conversion factor for full hybrid electric vehicle(HEV)equipped with continuously variable transmission(CVT)is proposed.Based on consideration of the efficiency of pivotal components,electric motor,system efficiency optimization models are developed.According to the target of instantaneous optimization of system efficiency,operating ranges of each mode of power-train are determined,and the corresponding energy management strategies are established.The simulation results demonstrate that the energy management strategy proposed can substantially improve the vehicle fuel economy,and keep battery state of charge(SOC)change in a reasonable variation range. 展开更多
关键词 hybrid electric vehicle energy management strategy efficiency optimization battery state of charge fuel-electric conversion factor
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部