Energy storage technologies, which enable demand response, are being explored throughout the world as a component of strategies for switching to renewable intermittent energy sources and reducing peak loads. This stud...Energy storage technologies, which enable demand response, are being explored throughout the world as a component of strategies for switching to renewable intermittent energy sources and reducing peak loads. This study examines thermal storage refrigeration (TSR) technology as a case study for the potential value of demand response in California and Denmark. Using technical specifications from a TSR prototype developed at UC Davis and market data from California and Denmark, the analysis examines possible business models for the TSR refrigerators and highlights market characteristics that are important to its adoption. Results suggest that the TSR technology is not a viable option in the current market environment in Denmark, but could payback in less than 6 years in California if a part of a demand response based virtual power plant. In a hypothetical future scenario involving real-time pricing in the retail market, a high degree of price volatility would be needed to make TSR technology appealing to residential consumers. Based on this analysis, an interesting area of future work would focus on the market potential of TSR technology for commercial and industrial applications.展开更多
The transition towards zero-carbon energy production is necessary to limit global warming.Smart energy systems have facilitated the control of demand-side resources to maintain the stability of the power grid and to p...The transition towards zero-carbon energy production is necessary to limit global warming.Smart energy systems have facilitated the control of demand-side resources to maintain the stability of the power grid and to provide balancing power for increasing renewable energy production.Virtual power plants are examples of demand–response solutions,which may also enable greenhouse gas(GHG)emission reductions due to the lower need for fossil-based balancing energy in the grid and the increased share of renewables.The aim of this study is to show how potential GHG emission reductions can be assessed through the carbon handprint approach for a virtual power plant(VPP)in a grid balancing market in Finland.According to our results,VPP can reduce the hourly based GHG emissions in the studied Finnish grid systems compared with the balancing power without the VPP.Typical energy sources used for the balance power are hydropower and fossil fuels.The reduction potential of GHG emissions varies from 68%to 98%depending on the share of the used energy source for the power balancing,thus VPPs have the potential to significantly reduce GHG emissions of electricity production and hence help mitigate climate change.展开更多
This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility...This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility networks,multiple distributed energy stations(DESs),and multiple energy users(EUs).The HMOGTA aims to solve the coordinated operation strategy of the electricity and natural gas networks considering the demand characteristics of DESs and EUs.In the HMOGTA,a hierarchical Stackelberg game model is developed for generating equilibrium strategies of DESs and EUs in each district energy network(DEN).Based on the game results,we obtain the coupling demand constraints of electricity and natural gas(CDCENs)which reflect the relationship between the amounts and prices of electricity and cooling(E&C)that DESs purchase from utility networks.Furthermore,the minimization of conflicting costs of E&G networks considering the CDCENs are solved by a multi-objective optimization method.A case study is conducted on a test IES composed of a 20-node natural gas network,a modified IEEE 30-bus system,and 3 DENs,which verifies the effectiveness of the proposed HMOGTA to realize fair treatment for all participants in the IES.展开更多
With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This st...With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.展开更多
A smart grid power system for a small region consisting of 1,000 residential homes with electric heating appliances from the demand side,and a generic generation mix of nuclear,hydro,coal,gas and oil-based generators ...A smart grid power system for a small region consisting of 1,000 residential homes with electric heating appliances from the demand side,and a generic generation mix of nuclear,hydro,coal,gas and oil-based generators representing the supply side,is investigated using agent-based simulations.The simulation includes a transactive load control in a real-time pricing electricity market.The study investigates the impacts of adding wind power and demand response(DR)on both greenhouse gas(GHG)emissions and generator cycling requirements.The results demonstrate and quantify the effectiveness of DR in mitigating the variability of renewable generation.The extent to which greenhouse gas emissions can be mitigated is found to be highly dependent on the mix of generators and their operational capacity factors.It is expected that the effects of demand response on electricity use can reduce dependency on fossil fuel-based electricity generation.However,the anticipated mitigation of GHG emissions is found to dependent on the number and efficiency of fossil fuel generators,and especially on the capacity factor at which they operate.Therefore,if a generator(the marginal seller)is forced to use less efficient fossil fuel power generation schemes,it will result in higher GHG emissions.The simulations show that DR can yield a small reduction in GHG emissions,but also lead to a smaller increase in emissions in circumstances when,for example,a generator(the marginal seller)is forced to use less efficient fossil fuel power generation schemes.Nonetheless,DR is shown to enhance overall system operation,particularly by facilitating increased penetration of variable renewable electricity generation without jeopardizing grid operation reliability.DR reduces the amount of generator cycling by an increased order of magnitude,thereby reducing wear and tear,improving generator efficiency,and avoiding the need for additional operating reserves.The effectiveness of DR for these uses depends on the participation of responsive loads,and this study highlights the need to maintain a certain degree of diversity of loads to ensure they can provide adequate responsiveness to the changing grid conditions.展开更多
负荷侧灵活性资源协同源侧多模式供热有利于电热综合能源系统低碳运行,为缓解“三北”地区“风热冲突”现象、提高风电消纳量从而降低系统碳排放量提出一种计及电热需求响应的光热-电热综合能源系统源荷协调经济调度模型。源侧通过配备...负荷侧灵活性资源协同源侧多模式供热有利于电热综合能源系统低碳运行,为缓解“三北”地区“风热冲突”现象、提高风电消纳量从而降低系统碳排放量提出一种计及电热需求响应的光热-电热综合能源系统源荷协调经济调度模型。源侧通过配备储热装置的光热电站(Concentrated Solar Power,CSP)和电加热装置(Electric Heater,EH)协同热电联产机组(Combined Heat and Power,CHP)供热在一定程度上解耦其“以热定电”工作模式,网侧建立了稳态电热潮流,荷侧计及电热需求响应,模型的综合优化目标考虑了系统总运行成本、弃风惩罚成本及碳交易成本。基于改进的IEEE30电网与6节点热网系统对所建立模型进行仿真,算例结果表明源荷协调运行可有效降低系统总调度成本、提高风电并网发电量及减少系统碳排放量。展开更多
汽油直喷(Gasoline direct injection,GDI)喷油器性能受温升影响较大,限制了发动机电子控制单元(Electronic control unit,ECU)对其喷油量的控制精度。针对GDI喷油器电、磁、热子系统之间的耦合关系,建立了耦合过程的物理模型,通过研究...汽油直喷(Gasoline direct injection,GDI)喷油器性能受温升影响较大,限制了发动机电子控制单元(Electronic control unit,ECU)对其喷油量的控制精度。针对GDI喷油器电、磁、热子系统之间的耦合关系,建立了耦合过程的物理模型,通过研究GDI喷油器工作过程中能量损耗及转化关系,揭示了电磁转化过程中产生的损耗是造成喷油器本体温升的主要原因。以电磁转化过程中能量损耗为热源,以热辐射和热传导基本理论为依据,利用ANSYS有限元软件对GDI喷油器温度场进行仿真分析,并进行了试验验证,分析了GDI喷油器本体温度场分布特点以及温升变化对喷油器性能的影响规律。结果表明,线圈和铁芯部分的温升较高,随温度升高GDI喷油器动态响应时间延长、喷油量减少,且温升受保持电流和保持脉宽的影响较大。展开更多
文摘Energy storage technologies, which enable demand response, are being explored throughout the world as a component of strategies for switching to renewable intermittent energy sources and reducing peak loads. This study examines thermal storage refrigeration (TSR) technology as a case study for the potential value of demand response in California and Denmark. Using technical specifications from a TSR prototype developed at UC Davis and market data from California and Denmark, the analysis examines possible business models for the TSR refrigerators and highlights market characteristics that are important to its adoption. Results suggest that the TSR technology is not a viable option in the current market environment in Denmark, but could payback in less than 6 years in California if a part of a demand response based virtual power plant. In a hypothetical future scenario involving real-time pricing in the retail market, a high degree of price volatility would be needed to make TSR technology appealing to residential consumers. Based on this analysis, an interesting area of future work would focus on the market potential of TSR technology for commercial and industrial applications.
文摘The transition towards zero-carbon energy production is necessary to limit global warming.Smart energy systems have facilitated the control of demand-side resources to maintain the stability of the power grid and to provide balancing power for increasing renewable energy production.Virtual power plants are examples of demand–response solutions,which may also enable greenhouse gas(GHG)emission reductions due to the lower need for fossil-based balancing energy in the grid and the increased share of renewables.The aim of this study is to show how potential GHG emission reductions can be assessed through the carbon handprint approach for a virtual power plant(VPP)in a grid balancing market in Finland.According to our results,VPP can reduce the hourly based GHG emissions in the studied Finnish grid systems compared with the balancing power without the VPP.Typical energy sources used for the balance power are hydropower and fossil fuels.The reduction potential of GHG emissions varies from 68%to 98%depending on the share of the used energy source for the power balancing,thus VPPs have the potential to significantly reduce GHG emissions of electricity production and hence help mitigate climate change.
基金This work was supported by the State Key Program of National Natural Science Foundation of China(Grant No.51437006)the Natural Science Foundation of Guangdong Province,China(2018A030313799).
文摘This paper proposes a hybrid multi-objective optimization and game-theoretic approach(HMOGTA)to achieve the optimal operation of integrated energy systems(IESs)consisting of electricity and natural gas(E&G)utility networks,multiple distributed energy stations(DESs),and multiple energy users(EUs).The HMOGTA aims to solve the coordinated operation strategy of the electricity and natural gas networks considering the demand characteristics of DESs and EUs.In the HMOGTA,a hierarchical Stackelberg game model is developed for generating equilibrium strategies of DESs and EUs in each district energy network(DEN).Based on the game results,we obtain the coupling demand constraints of electricity and natural gas(CDCENs)which reflect the relationship between the amounts and prices of electricity and cooling(E&C)that DESs purchase from utility networks.Furthermore,the minimization of conflicting costs of E&G networks considering the CDCENs are solved by a multi-objective optimization method.A case study is conducted on a test IES composed of a 20-node natural gas network,a modified IEEE 30-bus system,and 3 DENs,which verifies the effectiveness of the proposed HMOGTA to realize fair treatment for all participants in the IES.
基金supported by State Grid Shanxi Electric Power Company Science and Technology Project“Research on key technologies of carbon tracking and carbon evaluation for new power system”(Grant:520530230005)。
文摘With the introduction of the“dual carbon”goal and the continuous promotion of low-carbon development,the integrated energy system(IES)has gradually become an effective way to save energy and reduce emissions.This study proposes a low-carbon economic optimization scheduling model for an IES that considers carbon trading costs.With the goal of minimizing the total operating cost of the IES and considering the transferable and curtailable characteristics of the electric and thermal flexible loads,an optimal scheduling model of the IES that considers the cost of carbon trading and flexible loads on the user side was established.The role of flexible loads in improving the economy of an energy system was investigated using examples,and the rationality and effectiveness of the study were verified through a comparative analysis of different scenarios.The results showed that the total cost of the system in different scenarios was reduced by 18.04%,9.1%,3.35%,and 7.03%,respectively,whereas the total carbon emissions of the system were reduced by 65.28%,20.63%,3.85%,and 18.03%,respectively,when the carbon trading cost and demand-side flexible electric and thermal load responses were considered simultaneously.Flexible electrical and thermal loads did not have the same impact on the system performance.In the analyzed case,the total cost and carbon emissions of the system when only the flexible electrical load response was considered were lower than those when only the flexible thermal load response was taken into account.Photovoltaics have an excess of carbon trading credits and can profit from selling them,whereas other devices have an excess of carbon trading and need to buy carbon credits.
基金This work was supported by Pacific Institute for Climate Solutions(PICS)the Wind Energy Strategic Network(WESNet)and the US Department of Energy(DOE),Office of Electricity Delivery and Energy Reliability.
文摘A smart grid power system for a small region consisting of 1,000 residential homes with electric heating appliances from the demand side,and a generic generation mix of nuclear,hydro,coal,gas and oil-based generators representing the supply side,is investigated using agent-based simulations.The simulation includes a transactive load control in a real-time pricing electricity market.The study investigates the impacts of adding wind power and demand response(DR)on both greenhouse gas(GHG)emissions and generator cycling requirements.The results demonstrate and quantify the effectiveness of DR in mitigating the variability of renewable generation.The extent to which greenhouse gas emissions can be mitigated is found to be highly dependent on the mix of generators and their operational capacity factors.It is expected that the effects of demand response on electricity use can reduce dependency on fossil fuel-based electricity generation.However,the anticipated mitigation of GHG emissions is found to dependent on the number and efficiency of fossil fuel generators,and especially on the capacity factor at which they operate.Therefore,if a generator(the marginal seller)is forced to use less efficient fossil fuel power generation schemes,it will result in higher GHG emissions.The simulations show that DR can yield a small reduction in GHG emissions,but also lead to a smaller increase in emissions in circumstances when,for example,a generator(the marginal seller)is forced to use less efficient fossil fuel power generation schemes.Nonetheless,DR is shown to enhance overall system operation,particularly by facilitating increased penetration of variable renewable electricity generation without jeopardizing grid operation reliability.DR reduces the amount of generator cycling by an increased order of magnitude,thereby reducing wear and tear,improving generator efficiency,and avoiding the need for additional operating reserves.The effectiveness of DR for these uses depends on the participation of responsive loads,and this study highlights the need to maintain a certain degree of diversity of loads to ensure they can provide adequate responsiveness to the changing grid conditions.
文摘负荷侧灵活性资源协同源侧多模式供热有利于电热综合能源系统低碳运行,为缓解“三北”地区“风热冲突”现象、提高风电消纳量从而降低系统碳排放量提出一种计及电热需求响应的光热-电热综合能源系统源荷协调经济调度模型。源侧通过配备储热装置的光热电站(Concentrated Solar Power,CSP)和电加热装置(Electric Heater,EH)协同热电联产机组(Combined Heat and Power,CHP)供热在一定程度上解耦其“以热定电”工作模式,网侧建立了稳态电热潮流,荷侧计及电热需求响应,模型的综合优化目标考虑了系统总运行成本、弃风惩罚成本及碳交易成本。基于改进的IEEE30电网与6节点热网系统对所建立模型进行仿真,算例结果表明源荷协调运行可有效降低系统总调度成本、提高风电并网发电量及减少系统碳排放量。
文摘汽油直喷(Gasoline direct injection,GDI)喷油器性能受温升影响较大,限制了发动机电子控制单元(Electronic control unit,ECU)对其喷油量的控制精度。针对GDI喷油器电、磁、热子系统之间的耦合关系,建立了耦合过程的物理模型,通过研究GDI喷油器工作过程中能量损耗及转化关系,揭示了电磁转化过程中产生的损耗是造成喷油器本体温升的主要原因。以电磁转化过程中能量损耗为热源,以热辐射和热传导基本理论为依据,利用ANSYS有限元软件对GDI喷油器温度场进行仿真分析,并进行了试验验证,分析了GDI喷油器本体温度场分布特点以及温升变化对喷油器性能的影响规律。结果表明,线圈和铁芯部分的温升较高,随温度升高GDI喷油器动态响应时间延长、喷油量减少,且温升受保持电流和保持脉宽的影响较大。