The production process of iron and steel is accompanied by a large amount of energy production and consumption. Optimal scheduling and utilization of these energies within energy systems are crucial to realize a reduc...The production process of iron and steel is accompanied by a large amount of energy production and consumption. Optimal scheduling and utilization of these energies within energy systems are crucial to realize a reduction in the cost, energy use, and CO_2 emissions.However, it is difficult to model and schedule energy usage within steel works because different types of energy and devices are involved. The energy hub(EH), as a universal modeling frame, is widely used in multi-energy systems to improve its efficiency, flexibility, and reliability.This paper proposed an efficient multi-layer model based on the EH concept, which is designed to systematically model the energy system and schedule energy within steelworks to meet the energy demand. Besides, to simulate the actual working conditions of the energy devices, the method of fitting the curve is used to describe the efficiency of the energy devices. Moreover, to evaluate the applicability of the proposed model, a case study is conducted to minimize both the economic operation cost and CO_2 emissions. The optimal results demonstrated that the model is suitable for energy systems within steel works. Further, the economic operation cost decreased by 3.41%, and CO_2 emissions decreased by approximately 3.67%.展开更多
Integrated energy systems(lESs)represent a promising energy supply model within the energy internet.However,multi-energy flow coupling in the optimal configuration of IES results in a series of simplifications in the ...Integrated energy systems(lESs)represent a promising energy supply model within the energy internet.However,multi-energy flow coupling in the optimal configuration of IES results in a series of simplifications in the preliminary planning,affecting the cost,efficiency,and environmental performance of IES.A novel optimal planning method that considers the part-load characteristics and spatio-temporal synergistic effects of IES components is proposed to enable a rational design of the structure and size of IES.An extended energy hub model is introduced based on the“node of energy hub”concept by decomposing the IES into different types of energy equipment.Subsequently,a planning method is applied as a two-level optimization framework-the upper level is used to identify the type and size of the component,while the bottom level is used to optimize the operation strategy based on a typical day analysis method.The planning problem is solved using a two-stage evolutionary algorithm,combing the multiple-mutations adaptive genetic algorithm with an interior point optimization solver,to minimize the lifetime cost of the IES.Finally,the feasibility of the proposed planning method is demonstrated using a case study.The life cycle costs of the IES with and without consideration of the part-load characteristics of the components were$4.26 million and$4.15 million,respectively,in the case study.Moreover,ignoring the variation in component characteristics in the design stage resulted in an additional 11.57%expenditure due to an energy efficiency reduction under the off-design conditions.展开更多
The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- ta...The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- tant distributed energy technologies is Combined Cooling, Heat and Power (CCHP) systems. CCHP is a small and self-contained electric, heating and cooling generation plant that can provide power for households, commercial or industrial facilities. It can reduce power loss and enhance service reliability in distribution systems. The proposed method in this paper determines the optimal size and operation of CCHP, auxiliary boiler and also heat storage unit as elements of an energy hub, for users by an integrated view of electricity and natural gas network. Authors apply cost and benefit analysis in the optimization. To confirm the proposed method, the optimum sizes of these elements are determined for a hotel in Tehran as a case study.展开更多
To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltai...To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.展开更多
In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Impr...In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.展开更多
In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improv...In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improve their individual operating efficiency and overall economic benefits. Demand response, as a multi-energy supply and demand balance method, can further improve system flexibility and economy. Therefore, a multi-energy cooperative system optimization model has been proposed, which is driven by price-based demand response to determine the impact of power-demand response on the optimal operating mode of a multi-energy cooperative system. The main components of the multi-energy collaborative system have been analyzed. The multi-energy coupling characteristics have been identified based on the energy hub model. Using market elasticity as a basis, a price-based demand response model has been built. The model has been optimized to minimize daily operating cost of the multi-energy collaborative system. Using data from an actual situation, the model has been verified, and we have shown that the adoption of price-based demand response measures can significantly improve the economy of multi-energy collaborative systems.展开更多
Multi-energy flow (MEF) coupling is one of the key features of the energy Internet and integrated energy systems that are different from smart grids. With the increasing coupling of heterogeneous energy flow, the syst...Multi-energy flow (MEF) coupling is one of the key features of the energy Internet and integrated energy systems that are different from smart grids. With the increasing coupling of heterogeneous energy flow, the system characteristics of coupling are becoming more and more obvious and more complicated. The modeling, analysis and control methods of traditional single flow systems have not been applied directly. Therefore, it is necessary to study the modeling of multi-energy flow coupling, the power flow analysis, optimization and control method of heterogeneous energy flow, which plays the role of multi-energy flow synergy to avoid the adverse effects of coupling. This paper summarizes the current research situation of energy Internet at home and abroad from the aspects of modeling of multi-energy flow, power flow calculation and optimal dispatching, and analyzes the existing problems in the research of these aspects.展开更多
针对低碳新能源供能与电热气负荷间能量平衡困难及其时空不确定性,提出一种基于交通流和多源能量流协同的城市多能源系统移动能量枢纽(mobile energy hub, MEH)模型及规划方法。首先,研究低碳型高比例可再生能源供能的城市多能源系统源...针对低碳新能源供能与电热气负荷间能量平衡困难及其时空不确定性,提出一种基于交通流和多源能量流协同的城市多能源系统移动能量枢纽(mobile energy hub, MEH)模型及规划方法。首先,研究低碳型高比例可再生能源供能的城市多能源系统源网荷能量和功率平衡及其调节需求特性,建立具有灵活的“电-气-氢”能源转换和存储特性的移动能量枢纽模型;其次,基于移动能量枢纽模型,综合考虑交通运输网络流量动态及其输运成本,建立基于交通网与城市多能源系统网络协同和移动能量枢纽能量特性的多能流时空协调模型;然后,考虑可再生能源出力以及负荷不确定性,提出城市多能源系统不确定性模型,并在此基础上建立了综合投资和运行成本最小的移动能量枢纽规划模型;最后,以我国北方某地区多能源系统运行数据为基础,建立移动能量枢纽仿真模型。算例仿真结果表明,该文提出的移动能量枢纽规划模型能够有效提升城市多能源系统维持较高能量平衡水平下的经济性,并可为较大供能规模的多能源网络提供较好的多时空尺度能量调节特性。展开更多
基金financially supported by the National Key Research and Development Program of China (No.2020YFB1711102)the National Natural Science Foundation of China (No.51874095)。
文摘The production process of iron and steel is accompanied by a large amount of energy production and consumption. Optimal scheduling and utilization of these energies within energy systems are crucial to realize a reduction in the cost, energy use, and CO_2 emissions.However, it is difficult to model and schedule energy usage within steel works because different types of energy and devices are involved. The energy hub(EH), as a universal modeling frame, is widely used in multi-energy systems to improve its efficiency, flexibility, and reliability.This paper proposed an efficient multi-layer model based on the EH concept, which is designed to systematically model the energy system and schedule energy within steelworks to meet the energy demand. Besides, to simulate the actual working conditions of the energy devices, the method of fitting the curve is used to describe the efficiency of the energy devices. Moreover, to evaluate the applicability of the proposed model, a case study is conducted to minimize both the economic operation cost and CO_2 emissions. The optimal results demonstrated that the model is suitable for energy systems within steel works. Further, the economic operation cost decreased by 3.41%, and CO_2 emissions decreased by approximately 3.67%.
基金the National Natural Science Foundation of China(Grant No.51821004)supported by the Major Program of the National Natural Science Foundation of China(Grant No.52090062)The author Chengzhou Li also thank the China Scholarship Council(CSC)for the financial support.
文摘Integrated energy systems(lESs)represent a promising energy supply model within the energy internet.However,multi-energy flow coupling in the optimal configuration of IES results in a series of simplifications in the preliminary planning,affecting the cost,efficiency,and environmental performance of IES.A novel optimal planning method that considers the part-load characteristics and spatio-temporal synergistic effects of IES components is proposed to enable a rational design of the structure and size of IES.An extended energy hub model is introduced based on the“node of energy hub”concept by decomposing the IES into different types of energy equipment.Subsequently,a planning method is applied as a two-level optimization framework-the upper level is used to identify the type and size of the component,while the bottom level is used to optimize the operation strategy based on a typical day analysis method.The planning problem is solved using a two-stage evolutionary algorithm,combing the multiple-mutations adaptive genetic algorithm with an interior point optimization solver,to minimize the lifetime cost of the IES.Finally,the feasibility of the proposed planning method is demonstrated using a case study.The life cycle costs of the IES with and without consideration of the part-load characteristics of the components were$4.26 million and$4.15 million,respectively,in the case study.Moreover,ignoring the variation in component characteristics in the design stage resulted in an additional 11.57%expenditure due to an energy efficiency reduction under the off-design conditions.
文摘The interest in distributed generation has been increasing in recent years, especially due to technical devel- opment on generation systems that meet environmental and energy policy concerns. One of the most impor- tant distributed energy technologies is Combined Cooling, Heat and Power (CCHP) systems. CCHP is a small and self-contained electric, heating and cooling generation plant that can provide power for households, commercial or industrial facilities. It can reduce power loss and enhance service reliability in distribution systems. The proposed method in this paper determines the optimal size and operation of CCHP, auxiliary boiler and also heat storage unit as elements of an energy hub, for users by an integrated view of electricity and natural gas network. Authors apply cost and benefit analysis in the optimization. To confirm the proposed method, the optimum sizes of these elements are determined for a hotel in Tehran as a case study.
基金This research is supported by the Deputyship forResearch&Innovation,Ministry of Education in Saudi Arabia under Project Number(IFP-2022-35).
文摘To maximize energy profit with the participation of electricity,natural gas,and district heating networks in the day-ahead market,stochastic scheduling of energy hubs taking into account the uncertainty of photovoltaic and wind resources,has been carried out.This has been done using a new meta-heuristic algorithm,improved artificial rabbits optimization(IARO).In this study,the uncertainty of solar and wind energy sources is modeled using Hang’s two-point estimating method(TPEM).The IARO algorithm is applied to calculate the best capacity of hub energy equipment,such as solar and wind renewable energy sources,combined heat and power(CHP)systems,steamboilers,energy storage,and electric cars in the day-aheadmarket.The standard ARO algorithmis developed to mimic the foraging behavior of rabbits,and in this work,the algorithm’s effectiveness in avoiding premature convergence is improved by using the dystudynamic inertia weight technique.The proposed IARO-based scheduling framework’s performance is evaluated against that of traditional ARO,particle swarm optimization(PSO),and salp swarm algorithm(SSA).The findings show that,in comparison to previous approaches,the suggested meta-heuristic scheduling framework based on the IARO has increased energy profit in day-ahead electricity,gas,and heating markets by satisfying the operational and energy hub limitations.Additionally,the results show that TPEM approach dependability consideration decreased hub energy’s profit by 8.995%as compared to deterministic planning.
基金supported by National Key R&D Program of China (No. 2018YFB0905000)Science and Technology Project of SGCC (SGTJDK00DWJS1800232)+1 种基金National Natural Science Foundation of China (51977141)State Grid Corporation of China project: “Research on Construction Technology of Integrated Energy System for Urban Multifunctional Groups” (SGTJJY00GHJS1900040)
文摘In recent years,primary energy consumption in China’s urban areas has increased rapidly,facing the problems of extensive use of energy,high energy consumption and insufficient intensified use of energy resources.Improving multienergy supply,increasing the proportion of clean energy and integrated energy efficiency are the main goals of urban development.The integrated energy system with multi-functional synergy and open trading will become one of the new directions for the development of new urban energy systems.This paper summarizes the main problems faced by the current towns and the characteristics of the new urban energy system,analyzes the development of new urban energy system from three aspects including energy interconnection hub infrastructure construction,energy management platform construction and energy value sharing,and forecasts the future development direction of new urban energy systems.
基金supported by State Grid Corporation Technology Project (5400-201956447A-0-0-00)。
文摘In a multi-energy collaboration system, cooling, heating, electricity, and other energy components are coupled to complement each other. Through multi-energy coordination and cooperation, they can significantly improve their individual operating efficiency and overall economic benefits. Demand response, as a multi-energy supply and demand balance method, can further improve system flexibility and economy. Therefore, a multi-energy cooperative system optimization model has been proposed, which is driven by price-based demand response to determine the impact of power-demand response on the optimal operating mode of a multi-energy cooperative system. The main components of the multi-energy collaborative system have been analyzed. The multi-energy coupling characteristics have been identified based on the energy hub model. Using market elasticity as a basis, a price-based demand response model has been built. The model has been optimized to minimize daily operating cost of the multi-energy collaborative system. Using data from an actual situation, the model has been verified, and we have shown that the adoption of price-based demand response measures can significantly improve the economy of multi-energy collaborative systems.
文摘Multi-energy flow (MEF) coupling is one of the key features of the energy Internet and integrated energy systems that are different from smart grids. With the increasing coupling of heterogeneous energy flow, the system characteristics of coupling are becoming more and more obvious and more complicated. The modeling, analysis and control methods of traditional single flow systems have not been applied directly. Therefore, it is necessary to study the modeling of multi-energy flow coupling, the power flow analysis, optimization and control method of heterogeneous energy flow, which plays the role of multi-energy flow synergy to avoid the adverse effects of coupling. This paper summarizes the current research situation of energy Internet at home and abroad from the aspects of modeling of multi-energy flow, power flow calculation and optimal dispatching, and analyzes the existing problems in the research of these aspects.
文摘针对低碳新能源供能与电热气负荷间能量平衡困难及其时空不确定性,提出一种基于交通流和多源能量流协同的城市多能源系统移动能量枢纽(mobile energy hub, MEH)模型及规划方法。首先,研究低碳型高比例可再生能源供能的城市多能源系统源网荷能量和功率平衡及其调节需求特性,建立具有灵活的“电-气-氢”能源转换和存储特性的移动能量枢纽模型;其次,基于移动能量枢纽模型,综合考虑交通运输网络流量动态及其输运成本,建立基于交通网与城市多能源系统网络协同和移动能量枢纽能量特性的多能流时空协调模型;然后,考虑可再生能源出力以及负荷不确定性,提出城市多能源系统不确定性模型,并在此基础上建立了综合投资和运行成本最小的移动能量枢纽规划模型;最后,以我国北方某地区多能源系统运行数据为基础,建立移动能量枢纽仿真模型。算例仿真结果表明,该文提出的移动能量枢纽规划模型能够有效提升城市多能源系统维持较高能量平衡水平下的经济性,并可为较大供能规模的多能源网络提供较好的多时空尺度能量调节特性。