背景:随着对干细胞技术研究的深入,如何使其准确归巢成为临床应用中的一大难题。除药物和趋化因子等信号的诱导外,电场也被广泛应用于指导干细胞的定向迁移,并可增强其迁移速度和定向性。目的:旨在分析总结电场对干细胞迁移特性的影响,...背景:随着对干细胞技术研究的深入,如何使其准确归巢成为临床应用中的一大难题。除药物和趋化因子等信号的诱导外,电场也被广泛应用于指导干细胞的定向迁移,并可增强其迁移速度和定向性。目的:旨在分析总结电场对干细胞迁移特性的影响,同时综述可能的作用机制。方法:通过检索Pub Med和中国知网数据库,收集截至2024年3月的相关文献,英文检索词:“stem cells,direct current electric field,pulsed electric field,migration,electric field device,mechanism”;中文检索词:“干细胞,直流电场,脉冲电场,迁移,电场装置,机制”。排除不能获取全文和与主题无关的文献。结果与结论:根据筛选要求共纳入58篇文献,包括中文文献15篇及英文文献43篇。文献以脂肪间充质干细胞、骨髓间充质干细胞、神经干细胞、表皮干细胞、人胚胎干细胞和人诱导性多功能干细胞为研究对象,在迁移装置中研究电场的不同参数对上述干细胞迁移的影响及其机制。(1)电场作为一种简单、无创且稳定的干预方式在指导干细胞定向迁移的过程中起着积极作用;(2)不同类型的干细胞发生趋电性迁移的方向不同,同时大部分干细胞的迁移速度和定向性是随着电场强度增加而增加的;(3)不同的电场装置在观测干细胞迁移时的侧重点不同,可根据实验目的而择优选择相关装置;(4)不同干细胞趋电性迁移的机制不完全相同,多数干细胞迁移过程中有MAPK通路、ROCK活化以及PI3K功能的参与,同时还有其他蛋白质复合物与信号通路参与调控该过程;(5)除电场参数不同之外,细胞本身的衰老情况和培养环境也会对趋电性迁移的结果产生影响。总而言之,电场作为一种影响干细胞迁移特性的重要信号,与其他新兴材料结合在组织工程应用中展现出了一定的潜力,有望在指导干细胞归巢方面发挥更加重要的作用,促进骨组织再生和修复以及神经系统、自身免疫系统以及肿瘤等疾病的研究取得更大的突破。展开更多
Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed t...Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.展开更多
The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(ar...The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.展开更多
Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the...Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions.展开更多
文摘背景:随着对干细胞技术研究的深入,如何使其准确归巢成为临床应用中的一大难题。除药物和趋化因子等信号的诱导外,电场也被广泛应用于指导干细胞的定向迁移,并可增强其迁移速度和定向性。目的:旨在分析总结电场对干细胞迁移特性的影响,同时综述可能的作用机制。方法:通过检索Pub Med和中国知网数据库,收集截至2024年3月的相关文献,英文检索词:“stem cells,direct current electric field,pulsed electric field,migration,electric field device,mechanism”;中文检索词:“干细胞,直流电场,脉冲电场,迁移,电场装置,机制”。排除不能获取全文和与主题无关的文献。结果与结论:根据筛选要求共纳入58篇文献,包括中文文献15篇及英文文献43篇。文献以脂肪间充质干细胞、骨髓间充质干细胞、神经干细胞、表皮干细胞、人胚胎干细胞和人诱导性多功能干细胞为研究对象,在迁移装置中研究电场的不同参数对上述干细胞迁移的影响及其机制。(1)电场作为一种简单、无创且稳定的干预方式在指导干细胞定向迁移的过程中起着积极作用;(2)不同类型的干细胞发生趋电性迁移的方向不同,同时大部分干细胞的迁移速度和定向性是随着电场强度增加而增加的;(3)不同的电场装置在观测干细胞迁移时的侧重点不同,可根据实验目的而择优选择相关装置;(4)不同干细胞趋电性迁移的机制不完全相同,多数干细胞迁移过程中有MAPK通路、ROCK活化以及PI3K功能的参与,同时还有其他蛋白质复合物与信号通路参与调控该过程;(5)除电场参数不同之外,细胞本身的衰老情况和培养环境也会对趋电性迁移的结果产生影响。总而言之,电场作为一种影响干细胞迁移特性的重要信号,与其他新兴材料结合在组织工程应用中展现出了一定的潜力,有望在指导干细胞归巢方面发挥更加重要的作用,促进骨组织再生和修复以及神经系统、自身免疫系统以及肿瘤等疾病的研究取得更大的突破。
基金funded by National funds,through the Foundation for Science and Technology (FCT)-project UIDB/50026/2020 (DOI 10.54499/UIDB/50026/2020),UIDP/50026/2020 (DOI 10.54499/UIDP/50026/2020) and LA/P/0050/2020 (DOI 10.54499/LA/P/0050/2020)(to NAS)Financial support was also provided by Prémios Santa Casa Neurociências–Prize Melo e Castro for Spinal Cord Injury Research (MC-18-2021)Wings for Life Spinal Cord Research Foundation (WFL-PT-14/23)(to NAS)。
文摘Spinal cord injuries have profound detrimental effects on individuals, regardless of whether they are caused by trauma or non-traumatic events. The compromised regeneration of the spinal cord is primarily attributed to damaged neurons, inhibitory molecules, dysfunctional immune response, and glial scarring. Unfortunately, currently, there are no effective treatments available that can fully repair the spinal cord and improve functional outcomes. Nevertheless, numerous pre-clinical approaches have been studied for spinal cord injury recovery, including using biomaterials, cells, drugs, or technological-based strategies. Combinatorial treatments, which target various aspects of spinal cord injury pathophysiology, have been extensively tested in the last decade. These approaches aim to synergistically enhance repair processes by addressing various obstacles faced during spinal cord regeneration. Thus, this review intends to provide scientists and clinicians with an overview of pre-clinical combinatorial approaches that have been developed toward the solution of spinal cord regeneration as well as update the current knowledge about spinal cord injury pathophysiology with an emphasis on the current clinical management.
基金supported by the Talent Fund of Beijing Jiaotong University(No,2023XKRC015)the National Natural Science Foundation of China(Nos.52172081,52073010 and 52373259).
文摘The design and fabrication of high toughness electromagnetic interference(EMI)shielding composite films with diminished reflection are an imperative task to solve electromagnetic pollution problem.Ternary MXene/ANF(aramid nanofibers)–MoS_(2)composite films with nacre-like layered structure here are fabricated after the introduction of MoS_(2)into binary MXene/ANF composite system.The introduction of MoS_(2)fulfills an impressive“kill three birds with one stone”improvement effect:lubrication toughening mechanical performance,reduction in secondary reflection pollution of electromagnetic wave,and improvement in the performance of photothermal conversion.After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 50:50),the strain to failure and tensile strength increase from 22.1±1.7%and 105.7±6.4 MPa and to 25.8±0.7%and 167.3±9.1 MPa,respectively.The toughness elevates from 13.0±4.1 to 26.3±0.8 MJ m^(−3)(~102.3%)simultaneously.And the reflection shielding effectiveness(SE_(R))of MXene/ANF(mass ratio of 50:50)decreases~10.8%.EMI shielding effectiveness(EMI SE)elevates to 41.0 dB(8.2–12.4 GHz);After the introduction of MoS_(2)into binary MXene/ANF(mass ratio of 60:40),the strain to failure increases from 18.3±1.9%to 28.1±0.7%(~53.5%),the SE_(R)decreases~22.2%,and the corresponding EMI SE is 43.9 dB.The MoS_(2)also leads to a more efficient photothermal conversion performance(~45 to~55℃).Additionally,MXene/ANF–MoS_(2)composite films exhibit excellent electric heating performance,quick temperature elevation(15 s),excellent cycle stability(2,2.5,and 3 V),and long-term stability(2520 s).Combining with excellent mechanical performance with high MXene content,electric heating performance,and photothermal conversion performance,EMI shielding ternary MXene/ANF–MoS_(2)composite films could be applied in many industrial areas.This work broadens how to achieve a balance between mechanical properties and versatility of composites in the case of high-function fillers.
基金supported by the Spanish Ministry of Science and Innovation under Projects PID2022-137680OB-C32 and PID2022-139187OB-I00.
文摘Customer segmentation according to load-shape profiles using smart meter data is an increasingly important application to vital the planning and operation of energy systems and to enable citizens’participation in the energy transition.This study proposes an innovative multi-step clustering procedure to segment customers based on load-shape patterns at the daily and intra-daily time horizons.Smart meter data is split between daily and hourly normalized time series to assess monthly,weekly,daily,and hourly seasonality patterns separately.The dimensionality reduction implicit in the splitting allows a direct approach to clustering raw daily energy time series data.The intraday clustering procedure sequentially identifies representative hourly day-unit profiles for each customer and the entire population.For the first time,a step function approach is applied to reduce time series dimensionality.Customer attributes embedded in surveys are employed to build external clustering validation metrics using Cramer’s V correlation factors and to identify statistically significant determinants of load-shape in energy usage.In addition,a time series features engineering approach is used to extract 16 relevant demand flexibility indicators that characterize customers and corresponding clusters along four different axes:available Energy(E),Temporal patterns(T),Consistency(C),and Variability(V).The methodology is implemented on a real-world electricity consumption dataset of 325 Small and Medium-sized Enterprise(SME)customers,identifying 4 daily and 6 hourly easy-to-interpret,well-defined clusters.The application of the methodology includes selecting key parameters via grid search and a thorough comparison of clustering distances and methods to ensure the robustness of the results.Further research can test the scalability of the methodology to larger datasets from various customer segments(households and large commercial)and locations with different weather and socioeconomic conditions.