Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the co...Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the control and measurement of characteristics of electro chemical cell, was developed by means of some essential improvements. Not only can it be used to control and measure the steady and non-steady state characteristics, but also it can be directly connected with Solartron 1170 series or 1250 Frequency Response Analysers (FRA) to measure the AC impedance. Besides,the EC1 can also be connected with two- or three-electrode electro chemical cell systems to test convenlently and correctly their DC and AC characteristics, and used as a four-electrode potentlostat combined with four-electrode electro chernical cell system which contains two reference electrodes (RES) for researches on the electro chemical characteristics of oil-water interface, etc.展开更多
We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield...We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.展开更多
We report on a novel g-C3N4/TiO 2/Co-Pi photoanode combining a TiO2 protection layer, Co-Pi hole capture layer, and g-C3 N4 light-absorption layer layer for photoelectrochemical(PEC) water splitting to generate hydr...We report on a novel g-C3N4/TiO 2/Co-Pi photoanode combining a TiO2 protection layer, Co-Pi hole capture layer, and g-C3 N4 light-absorption layer layer for photoelectrochemical(PEC) water splitting to generate hydrogen for the first time. This new photoanode with three function layers exhibits enhanced PEC performance with a photocurrent density of 0.346 mA ·cm–2 at 1.1 V(vs. RHE),which is approximately 3.6 times that of pure g-C3N4 photoanode. The enhanced PEC performance of g-C3N4/TiO 2/Co-Pi photoanode benefits from the following:(1) excellent visible light absorption of g-C3N4;(2) stable protection of TiO2 to improve the durability of g-C3N4 film; and(3) photogenerated holes capture Co-Pi to separate photogenerated electron-hole pairs efficiently. This promising multifarious function layers structure provides a new perspective for PEC water splitting to generate hydrogen.展开更多
The magnetic nanoparticles modified with carboxyl functional group were synthesized and characterized. These nanoparticles covalently bound with hepatitis B surface antibody(HBsAb), were used to detect hepatitis B s...The magnetic nanoparticles modified with carboxyl functional group were synthesized and characterized. These nanoparticles covalently bound with hepatitis B surface antibody(HBsAb), were used to detect hepatitis B surface antigen (HBsAg) in immunovoltammetry. The detection limit was found to be 0.06 ng/mL, which is much higher than that of enzyme-linked immunosorbent assay (ELISA) used in clinical analysis.展开更多
文摘Based on the circuit principle of 1186 Electro Chemical Interface preduced by Solartron Electronic Group Ltd., a precise electro chemical interface (ECI) unit, which can provide the interfacing requirements for the control and measurement of characteristics of electro chemical cell, was developed by means of some essential improvements. Not only can it be used to control and measure the steady and non-steady state characteristics, but also it can be directly connected with Solartron 1170 series or 1250 Frequency Response Analysers (FRA) to measure the AC impedance. Besides,the EC1 can also be connected with two- or three-electrode electro chemical cell systems to test convenlently and correctly their DC and AC characteristics, and used as a four-electrode potentlostat combined with four-electrode electro chernical cell system which contains two reference electrodes (RES) for researches on the electro chemical characteristics of oil-water interface, etc.
基金This work was supported by the National Basic Research Program of Ministry of Science and Technology of China (No.2007CB210206), the National High Tech Research and Development Program (No.2009AA05Z435), and the National Natural Science Foundation of China (No.50772107).
文摘We reports an efficient approach for production of hydrogen from crude bio-oil and biomass char in the dual fixed-bed system by using the electrochemical catalytic reforming method. The maximal absolute hydrogen yield reached 110.9 g H2/kg dry biomass. The product gas was a mixed gas containing 72%H2, 26%CO2, 1.9%CO, and a trace amount of CH4. It was observed that adding biomass char (a by-product of pyrolysis of biomass) could remarkably increase the absolute H2 yield (about 20%-50%). The higher reforming temperature could enhance the steam reforming reaction of organic compounds in crude bio-oil and the reaction of CO and H20. In addition, the CuZn-Al2O3 catalyst in the water-gas shift bed could also increase the absolute H2 yield via shifting CO to CO2.
基金supported by the Science Funds of Tianjin for Distinguished Young Scholar(17JCJQJC44800)Natural Science Foundation of Tianjin(16JCYBJC17900)Open Foundation of Hubei Collaborative Innovation Center for High-efficient Utilization of Solar Energy(HBSKFZD2017001)~~
文摘We report on a novel g-C3N4/TiO 2/Co-Pi photoanode combining a TiO2 protection layer, Co-Pi hole capture layer, and g-C3 N4 light-absorption layer layer for photoelectrochemical(PEC) water splitting to generate hydrogen for the first time. This new photoanode with three function layers exhibits enhanced PEC performance with a photocurrent density of 0.346 mA ·cm–2 at 1.1 V(vs. RHE),which is approximately 3.6 times that of pure g-C3N4 photoanode. The enhanced PEC performance of g-C3N4/TiO 2/Co-Pi photoanode benefits from the following:(1) excellent visible light absorption of g-C3N4;(2) stable protection of TiO2 to improve the durability of g-C3N4 film; and(3) photogenerated holes capture Co-Pi to separate photogenerated electron-hole pairs efficiently. This promising multifarious function layers structure provides a new perspective for PEC water splitting to generate hydrogen.
基金The work was supported by the National Natural Science Foundation of China(29975024,20275034)the Key Project of Science and Technology of Zhejiang Province(2003C21024)the Instrumental Analysis Foundation of Zhejiang Province(04062).The authors thank the Instrumental Analysis Center of Zhejiang University for special measurements.
文摘The magnetic nanoparticles modified with carboxyl functional group were synthesized and characterized. These nanoparticles covalently bound with hepatitis B surface antibody(HBsAb), were used to detect hepatitis B surface antigen (HBsAg) in immunovoltammetry. The detection limit was found to be 0.06 ng/mL, which is much higher than that of enzyme-linked immunosorbent assay (ELISA) used in clinical analysis.