当电力系统遭受某种较大扰动时,其安全稳定将受到威胁。为实现对整个系统受扰后机电暂态过程的完整跟踪,提出一种新的融合同步发电机动态状态估计(dynamic state estimation of synchronous generator,DSE-SG)的电力系统状态估计(state ...当电力系统遭受某种较大扰动时,其安全稳定将受到威胁。为实现对整个系统受扰后机电暂态过程的完整跟踪,提出一种新的融合同步发电机动态状态估计(dynamic state estimation of synchronous generator,DSE-SG)的电力系统状态估计(state estimation of power system,SE-PS),研究该如何将DSE-SG的结果进一步应用于系统侧SE-PS中去,以实现全系统动、静态状态量的统一估计。首先,围绕全电力系统机电暂态DSE的求解方式,论述了完全联立的不可行性、解耦估计的实现条件以及复耦估计的必要性与意义;其次,在梳理DSE-SG与SE-PS概念、数学模型的基础上,厘清了所涉变量、方程组的地位、作用、关系及数据流程,为复耦媒介量的选取及接口方式的确定奠定了理论基础,形成了复耦估计的实现构思;进一步,提出两种不同的接口方式,详细给出其各自具体的实现方法及流程;最后,将所提方法在IEEE9节点系统中予以实现,结果表明该方法可良好跟踪全电力系统机电暂态过程,实现动、静态状态量的统一估计,较未融合DSE-SG结果的传统SE-PS精度更高,滤波效果更显著。展开更多
This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the larg...This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the large number of restrictions on empirical data, a conventional Extended Kalman Filtering (EKF) is limited to apply in navigation systems by integrating MEMS-IMU/GPS. In response to non-linear non-Gaussian dynamic models of the inertial sensors, the methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. Then Particle Filtering (PF) can be used to data fusion of the inertial information and real-time updates from the GPS location and speed of information accurately. The experiments show that PF as opposed to EKF is more effective in raising MEMS-IMU/GPS navigation system’s data integration accuracy.展开更多
Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculo...Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.展开更多
为解决商用车在行驶过程中,传统的液压助力转向系统阻力较大且效率较低,并且在长期使用后保养不当容易泄露,可能引起事故等问题,对电动辅助转向电机控制算法和设计进行了研究。电动辅助转向电机选择永磁同步电机,通过应用模糊PID(Propor...为解决商用车在行驶过程中,传统的液压助力转向系统阻力较大且效率较低,并且在长期使用后保养不当容易泄露,可能引起事故等问题,对电动辅助转向电机控制算法和设计进行了研究。电动辅助转向电机选择永磁同步电机,通过应用模糊PID(Proportional Integral Derivative)算法可以精确,快速地调制到参考值。同时采用拓展卡尔曼滤波器可以估算永磁同步电机的转子位置,减小控制器的体积及成本。在驱动系统中,由于大电流耦合路径多样严重影响电机控制系统的电磁兼容性能,所以电机控制时采用驱动系统EMC(Electro Magnetic Compatibility)设计。实验结果表明,基于模糊PID算法以及拓展卡尔曼滤波器的永磁同步电机控制可以应用于商用车电动辅助转向电机控制中。展开更多
针对输电杆塔在线监测系统在使用低成本惯性测量单元(inertial measurement unit, IMU)测量杆塔倾角时存在测量精度低、姿态解算易发散、稳定性差的问题,提出一种基于改进自适应混合滤波算法的输电杆塔倾角测量方法。首先建立杆塔姿态...针对输电杆塔在线监测系统在使用低成本惯性测量单元(inertial measurement unit, IMU)测量杆塔倾角时存在测量精度低、姿态解算易发散、稳定性差的问题,提出一种基于改进自适应混合滤波算法的输电杆塔倾角测量方法。首先建立杆塔姿态解算坐标系,并结合四元数法确定了定姿方案。其次,运用改进型PI互补滤波算法对陀螺仪及加速度计进行信息融合,高低频优势互补,初步提升系统的姿态解算精度。最后将初步去噪后的信息作为Sage-Husa自适应滤波算法的初值,并引入滤波发散判据,在发散时调整误差协方差矩阵,从而对发散进行有效抑制,提高算法稳定性。实验结果表明,该算法可以有效提高测量精度,抑制解算结果的发散。展开更多
文摘当电力系统遭受某种较大扰动时,其安全稳定将受到威胁。为实现对整个系统受扰后机电暂态过程的完整跟踪,提出一种新的融合同步发电机动态状态估计(dynamic state estimation of synchronous generator,DSE-SG)的电力系统状态估计(state estimation of power system,SE-PS),研究该如何将DSE-SG的结果进一步应用于系统侧SE-PS中去,以实现全系统动、静态状态量的统一估计。首先,围绕全电力系统机电暂态DSE的求解方式,论述了完全联立的不可行性、解耦估计的实现条件以及复耦估计的必要性与意义;其次,在梳理DSE-SG与SE-PS概念、数学模型的基础上,厘清了所涉变量、方程组的地位、作用、关系及数据流程,为复耦媒介量的选取及接口方式的确定奠定了理论基础,形成了复耦估计的实现构思;进一步,提出两种不同的接口方式,详细给出其各自具体的实现方法及流程;最后,将所提方法在IEEE9节点系统中予以实现,结果表明该方法可良好跟踪全电力系统机电暂态过程,实现动、静态状态量的统一估计,较未融合DSE-SG结果的传统SE-PS精度更高,滤波效果更显著。
文摘This research aims at enhancing the accuracy of navigation systems by integrating GPS and Mi-cro-Electro-Mechanical-System (MEMS) based inertial measurement units (IMU). Because of the conditions re-quired by the large number of restrictions on empirical data, a conventional Extended Kalman Filtering (EKF) is limited to apply in navigation systems by integrating MEMS-IMU/GPS. In response to non-linear non-Gaussian dynamic models of the inertial sensors, the methods rely on a particle cloud representation of the filtering distribution which evolves through time using importance sampling and resampling ideas. Then Particle Filtering (PF) can be used to data fusion of the inertial information and real-time updates from the GPS location and speed of information accurately. The experiments show that PF as opposed to EKF is more effective in raising MEMS-IMU/GPS navigation system’s data integration accuracy.
基金supported by a grant from the National Institute of Information and Communications Technology(NICT),Japan
文摘Brain-computer interface is a communication system that connects the brain with computer (or other devices) but is not dependent on the normal output of the brain (i.e., peripheral nerve and muscle). Electro-oculogram is a dominant artifact which has a significant negative influence on further analysis of real electroencephalography data. This paper presented a data adaptive technique for artifact suppression and brain wave extraction from electroencephalography signals to detect regional brain activities. Empirical mode decomposition based adaptive thresholding approach was employed here to suppress the electro-oculogram artifact. Fractional Gaussian noise was used to determine the threshold level derived from the analysis data without any training. The purified electroencephalography signal was composed of the brain waves also called rhythmic components which represent the brain activities. The rhythmic components were extracted from each electroencephalography channel using adaptive wiener filter with the original scale. The regional brain activities were mapped on the basis of the spatial distribution of rhythmic components, and the results showed that different regions of the brain are activated in response to different stimuli. This research analyzed the activities of a single rhythmic component, alpha with respect to different motor imaginations. The experimental results showed that the proposed method is very efficient in artifact suppression and identifying individual motor imagery based on the activities of alpha component.
文摘为解决商用车在行驶过程中,传统的液压助力转向系统阻力较大且效率较低,并且在长期使用后保养不当容易泄露,可能引起事故等问题,对电动辅助转向电机控制算法和设计进行了研究。电动辅助转向电机选择永磁同步电机,通过应用模糊PID(Proportional Integral Derivative)算法可以精确,快速地调制到参考值。同时采用拓展卡尔曼滤波器可以估算永磁同步电机的转子位置,减小控制器的体积及成本。在驱动系统中,由于大电流耦合路径多样严重影响电机控制系统的电磁兼容性能,所以电机控制时采用驱动系统EMC(Electro Magnetic Compatibility)设计。实验结果表明,基于模糊PID算法以及拓展卡尔曼滤波器的永磁同步电机控制可以应用于商用车电动辅助转向电机控制中。
文摘针对输电杆塔在线监测系统在使用低成本惯性测量单元(inertial measurement unit, IMU)测量杆塔倾角时存在测量精度低、姿态解算易发散、稳定性差的问题,提出一种基于改进自适应混合滤波算法的输电杆塔倾角测量方法。首先建立杆塔姿态解算坐标系,并结合四元数法确定了定姿方案。其次,运用改进型PI互补滤波算法对陀螺仪及加速度计进行信息融合,高低频优势互补,初步提升系统的姿态解算精度。最后将初步去噪后的信息作为Sage-Husa自适应滤波算法的初值,并引入滤波发散判据,在发散时调整误差协方差矩阵,从而对发散进行有效抑制,提高算法稳定性。实验结果表明,该算法可以有效提高测量精度,抑制解算结果的发散。