The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported d...The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.展开更多
We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switch...We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.展开更多
We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.0...We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.展开更多
A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structtire Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretical...A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structtire Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their po- larization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non- polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems.展开更多
Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopan...Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.展开更多
A nanosecond response waveguide electro-optic (EO) switch based on ultraviolet (UV) sensitive polymers of Norland optical adhesive (NOA73) and Dispersed Red 1 (DR1) doped SU-8 (DR1/SU-8) is designed and fabr...A nanosecond response waveguide electro-optic (EO) switch based on ultraviolet (UV) sensitive polymers of Norland optical adhesive (NOA73) and Dispersed Red 1 (DR1) doped SU-8 (DR1/SU-8) is designed and fabricated. The absorption properties, refractive indexes, and surface morphologies of NOA73 film are characterized. The single-mode transmission condition is computed by the effective index method, and the percentage of optical field distributed in EO layer is optimized to be 93.78 %. By means of spin-coating, thermal evaporation, photolithography, and inductively coupled plasma etching, a Mach-Zehnder inverted-rib waveguide EO switch with micro-strip line electrode is fabricated on a silicon substrate. Scanning electron microscope characterization proves the physic-chemical compatibility between NOA73 cladding and DR1/SU-8 core material. The optical transmission loss of the fabricated switch is measured to be 2.5 dB/cm. The rise time and fall time of switching are 3.199 ns and 2.559 ns, respectively. These results indicate that the inverted-rib wave- guide based on UV-curable polymers can effectively reduce the optical transmission loss and improve the time response performance of an EO switch.展开更多
In a quantum key distribution system, it is crucial to keep the extinction ratio of the coherent pulses stable. This means that the direct current bias point of the electro-optic modulator (EOM) used for generating ...In a quantum key distribution system, it is crucial to keep the extinction ratio of the coherent pulses stable. This means that the direct current bias point of the electro-optic modulator (EOM) used for generating coherent pulses must be locked. In this paper, an autobias control system based on a lock-in-amplifier for the EOM is introduced. Its drift information extracting theory and control method are analyzed comprehensively. The long term drift of the extinction ratio of the coherent pulses is measured by a single photon detector, which indicates that the autobias control system is effective for stabilizing the bias point of the EOM.展开更多
Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor p...Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor phase deposition approaches were discussed. Prototype waveguide electro-optic modulators were fabricated using SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers.Promising electro-optic thin film materials including DTPT and PEPCOOH grown from the vapor phase were used for fabrication and test of electro-optic prototype modulators. Finally,the EO coefficient of tens of pm/V was obtained,which can sufficiently support high-speed and small size EO modulators.展开更多
The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits s...The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits stable bipolar resistive switching characteristic, good retention performance, and reversal characteristic. Under different pulse voltages and light fields, four stable resistance states can also be realized. The analysis shows that the main conduction mechanism of the resistive switching characteristic of the heterojunction is space charge limited current(SCLC) effect. After the comprehensive analysis of the band diagram and the P–E ferroelectric property of the multilayer heterojunction, we can deduce that the SCLC is formed by the effect of the oxygen vacancy which is controlled by ferroelectric polarizationmodulated change of interfacial barrier. And the effective photo-generated carrier also plays a regulatory role in resistance state(RS), which is formed by the double ferroelectric layer Ba TiO3/BiFeO3 under different light fields. This research is of potential application values for developing the multi-state non-volatile resistance random access memory(RRAM) devices based on ferroelectric materials.展开更多
The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. T...The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.展开更多
The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm mod...The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is-13 dB --27 dB. And a maximum crosstalk deterioration of 6d B caused by two-path interference is also found.展开更多
In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a ne...In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a new concept of plasma generation: a planar coil is coupled to an RF system for plasma generation. This was used together with an electrostatic shield, for plasma densification, thereby obtaining high-density plasmas. The carbon nanotubes were deposited using pure methane plasmas. Three methods were used for the surface modification of the sample: reference substrate (silicon wafer only submitted to a chemical cleaning), silicon wafer with surface roughness generated by plasma etching, silicon wafer with a thin iron film and silicon wafer with diamond nano powder used as precursor materials. For each kind of silicon wafer surface, the carbon nanotubes were deposited with two different deposition times (two and three hours). The carbon nanotubes structural characteristics were analyzed by Atomic Force Microscope and Scanning Electronic Microscope. The carbon nanotubes electrical characteristics were observed by Raman Spectroscopy and the carbon nanotubes electro-optical properties were analyzed by current vs voltage electrical measurements and photo-luminescence spectroscopy measurements. The photoelectric effect in the carbon nanotubes were determined by photo-induced current measurements. In this work, we obtained carbon nanotubes with semiconductor properties and carbon nanotubes with metallic properties. The electro-optical effects depend strongly on the substrate preparation and the deposition parameters of the carbon nanotubes. The carbon nanotubes are high aligned and show singular properties that can be used for many applications.展开更多
Fe^2+:ZnSe thin films are prepared on sapphire substrate at room temperature by electron beam evaporation and then annealed in vacuum(about 1×10^-4 Pa)at different temperatures.The influences of thermal annealing...Fe^2+:ZnSe thin films are prepared on sapphire substrate at room temperature by electron beam evaporation and then annealed in vacuum(about 1×10^-4 Pa)at different temperatures.The influences of thermal annealing on the structural and optical properties of these films such as grain size and optical transmittance are investigated.The x-ray diffraction patterns show that the Fe2+:ZnSe thin film is preferred to be oriented along the(111)plane at different annealing temperatures.After the film is annealed,the full-width-at-half-maximum(FWHM)of the x-ray diffraction peak profile(111)of the film decreases and its crystal quality is improved.Scanning electron microscope images show that the films are more dense after being annealed.Finally,the sample is used as a saturable absorber in ZBLAN fiber laser.The annealed Fe^2+:ZnSe thin films can be used to realize stable Q-switching modulation on ZBLAN fiber laser.The results demonstrate that the Fe2+:ZnSe thin film is a promising material for generating the high-power pulses of mid-infrared Q-switched fiber lasers.展开更多
Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of thi...Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.展开更多
We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at...We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.展开更多
High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement ...High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement of frequency shift characteristics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift characteristics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.展开更多
We made a comprehensive investigation on the electro-optic(EO) properties of hybrid sol-gel silica film doped with Dispersed Red 1 dye(DR1/SiO2). An important finding is that the dipoles which don't orient along ...We made a comprehensive investigation on the electro-optic(EO) properties of hybrid sol-gel silica film doped with Dispersed Red 1 dye(DR1/SiO2). An important finding is that the dipoles which don't orient along the direction of corona poling field in the films can be instantaneously poled by alternate modulation electrical field. This instant poling effect results in the EO coefficients dependent on the frequency and intensity of alternate modulation electric field, and some experiments have proved it. We also investigated the electro-optic coefficients and thickness of films at different stir temperatures(Ts) of start solution and at different number densities of DR1. Experimentally the DR1 number density was optimized to an order of 1021/cm^3 and a large EO coefficient of γ33= 37 pm/V for DR1/SiO2 film was measured by simple reflection technique at 1 kHz frequencies of modulation electric field. These findings may benefit the practical application of DR1/SiO2 films in the field of EO modulator and EO probing.展开更多
A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on s...A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of 1 mm in length and cross-section of 400 nm×340 nm. The measurement results show that the switch has a VπLπ figure of merit of 0.145 V.cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and -28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated.展开更多
We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a t...We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.展开更多
Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain...Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain. Dielectric relaxation study and electro-optical measurements are carried out with the classical SSFLC geometry. The field-induced phase transitions are studied and the(E,T) phase diagram is established.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.61975055)the Natural Science Foundation of Hunan Province,China(Grant No.2023JJ30165)+1 种基金the Natural Science Foundation of Shandong Province,China(Grant No.ZR2022QF005)the Doctoral Fund of University of Heze(Grant No.XY22BS14).
文摘The study of nonlinear optical responses in the mid-infrared(mid-IR)regime is essential for advancing ultrafast mid-IR laser applications.However,nonlinear optical effects under mid-IR excitation are rarely reported due to the lack of suitable nonlinear optical materials.The natural van derWaals heterostructure franckeite,known for its narrow bandgap and stability in air,shows great potential for developing mid-IR nonlinear optical devices.We have experimentally demonstrated that layered franckeite exhibits a broadband wavelength-dependent nonlinear optical response in the mid-IR spectral region.Franckeite nanosheets were prepared using a liquid-phase exfoliation method,and their nonlinear optical response was characterized in the spectral range of 3000 nm to 5000 nm.The franckeite nanosheets exhibit broadband wavelengthdependent third-order nonlinearities,with nonlinear absorption and refraction coefficients estimated to be about 10^(-7)cm/W and 10^(-11)cm^(2)/W,respectively.Additionally,a passively Q-switched fluoride fiber laser operating around a wavelength of 2800 nm was achieved,delivering nanosecond pulses with a signal-to-noise ratio of 43.6 dB,based on the nonlinear response of franckeite.These findings indicate that layered franckeite possesses broadband nonlinear optical characteristics in the mid-IR region,potentially enabling new possibilities for mid-IR photonic devices.
文摘We report the specification of a compact and stable side diode-pumped Q-switched pulsed Nd:YAG laser. We ex- perimentally study and compare the performance of the pulsed Nd:YAG laser in the free-running and Q-switched modes at different pulse repetition rates from 1 Hz to 100 Hz. The laser output energy is stabilized by using a special configu- ration of the optical resonator. In this laser, an unsymmetrical concave-concave resonator is used and this structure helps the mode volume to be nearly fixed when the pulse repetition rate is increased. According to the experimental results in the Q-switched operation, the laser output energy is nearly constant around 70 mJ with an FWHM pulse width of 7 ns at 100 Hz. The optical-to-optical conversion efficiency in the Q-switched regime is 17.5%.
基金Supported by the National Natural Science Foundation of China under Grant No 51572053
文摘We demonstrate a middle infrared ZnGeP_2 optical parametric oscillator pumped by the Q-switched Ho:GdVO_4 laser. When the incident Ho pump power is 4.12 W, the maximum average output power of the ZGP-OPO laser is 2.05 W, corresponding to a slope efficiency of 74.6%. The ZGP-OPO laser produces 4.2 ns mid-infrared pulses at a pulse repetition rate of 5 kHz. In addition, we obtain 0.8 um of tunable range for the signal wave and 2.1 um of tunable range for the idler wave.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61137004,61405218,and 61535014)
文摘A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structtire Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their po- larization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non- polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems.
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos. 60736042, 60578035 and 50703039) and the Science Foundation of Jilin Province of China (Grant Nos. 20050520 and 20050321-2).
文摘Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61177027,61107019,61205032,and 61261130586)
文摘A nanosecond response waveguide electro-optic (EO) switch based on ultraviolet (UV) sensitive polymers of Norland optical adhesive (NOA73) and Dispersed Red 1 (DR1) doped SU-8 (DR1/SU-8) is designed and fabricated. The absorption properties, refractive indexes, and surface morphologies of NOA73 film are characterized. The single-mode transmission condition is computed by the effective index method, and the percentage of optical field distributed in EO layer is optimized to be 93.78 %. By means of spin-coating, thermal evaporation, photolithography, and inductively coupled plasma etching, a Mach-Zehnder inverted-rib waveguide EO switch with micro-strip line electrode is fabricated on a silicon substrate. Scanning electron microscope characterization proves the physic-chemical compatibility between NOA73 cladding and DR1/SU-8 core material. The optical transmission loss of the fabricated switch is measured to be 2.5 dB/cm. The rise time and fall time of switching are 3.199 ns and 2.559 ns, respectively. These results indicate that the inverted-rib wave- guide based on UV-curable polymers can effectively reduce the optical transmission loss and improve the time response performance of an EO switch.
基金Project supported by the National Natural Science Foundation of China(Grant No.61108039)the Major Research Plan of the National Natural Science Foundation of China(Grant No.91121023)the Scientific Research Foundation of Graduate School of South China Normal University(Grant No.2012kyjj224)
文摘In a quantum key distribution system, it is crucial to keep the extinction ratio of the coherent pulses stable. This means that the direct current bias point of the electro-optic modulator (EOM) used for generating coherent pulses must be locked. In this paper, an autobias control system based on a lock-in-amplifier for the EOM is introduced. Its drift information extracting theory and control method are analyzed comprehensively. The long term drift of the extinction ratio of the coherent pulses is measured by a single photon detector, which indicates that the autobias control system is effective for stabilizing the bias point of the EOM.
文摘Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor phase deposition approaches were discussed. Prototype waveguide electro-optic modulators were fabricated using SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers.Promising electro-optic thin film materials including DTPT and PEPCOOH grown from the vapor phase were used for fabrication and test of electro-optic prototype modulators. Finally,the EO coefficient of tens of pm/V was obtained,which can sufficiently support high-speed and small size EO modulators.
基金Project supported by the Scientific Research Program of Hunan Provincial Education Department,China(Grant No.18C0232)the International Cooperative Extension Program of Changsha University of Science and Technology,China(Grant No.2019IC35)
文摘The novel BaTiO3/BiFeO3/TiO2 multilayer heterojunction is prepared on a fluorine-doped tinoxide(FTO) substrate by the sol–gel method. The results indicate that the Pt/Ba TiO3/BiFeO3/TiO2/FTO heterojunction exhibits stable bipolar resistive switching characteristic, good retention performance, and reversal characteristic. Under different pulse voltages and light fields, four stable resistance states can also be realized. The analysis shows that the main conduction mechanism of the resistive switching characteristic of the heterojunction is space charge limited current(SCLC) effect. After the comprehensive analysis of the band diagram and the P–E ferroelectric property of the multilayer heterojunction, we can deduce that the SCLC is formed by the effect of the oxygen vacancy which is controlled by ferroelectric polarizationmodulated change of interfacial barrier. And the effective photo-generated carrier also plays a regulatory role in resistance state(RS), which is formed by the double ferroelectric layer Ba TiO3/BiFeO3 under different light fields. This research is of potential application values for developing the multi-state non-volatile resistance random access memory(RRAM) devices based on ferroelectric materials.
基金Project supported the National Key Basic Research and Development Program of China (Grant Nos.2012CB921304 and 2013CB632805)the National Natural Science Foundation of China (Grant Nos.60990313,61306120,and 6106003)the Foundation of Fuzhou University (Grant No.022498)
文摘The mode splitting induced by electro-optic birefringence in a P-I-N InGaAs/GaAs/A1GaAs vertical-cavity surface- emitting laser (VCSEL) has been studied by polarized electroluminescence (EL) at room temperature. The polarized EL spectra with E||[110] and E || [150] directions, are extracted for different injected currents. The mode splitting of the two orthogonal polarized modes for a VCSEL device is determined, and its value increases linearly with the increasing injected current due to electro-optic birefringence; This article demonstrates that the polarized EL is a powerful tool to study the mode splitting and polarization anisotropy of a VCSEL device.
基金Project supported by the National Basic Research Program of China(Grant No.2011CB301701)the National High Technology Research and Development Program of China(Grant Nos.2013AA014402+2 种基金2012AA012202and 2015AA016904)the National Natural Science Foundation of China(Grant Nos.61275065 and 61107048)
文摘The first path-independent insertion-loss(PILOSS) strictly non-blocking 4×4 silicon electro–optic switch matrix is reported. The footprint of this switch matrix is only 4.6 mm×1.0 mm. Using single-arm modulation, the crosstalk measured in this test is-13 dB --27 dB. And a maximum crosstalk deterioration of 6d B caused by two-path interference is also found.
文摘In this work, we studied the electro-optical properties of high-aligned carbon nanotubes deposited at room temperature. For this, we used the High Density Plasma Chemical Vapor Deposition system. This system uses a new concept of plasma generation: a planar coil is coupled to an RF system for plasma generation. This was used together with an electrostatic shield, for plasma densification, thereby obtaining high-density plasmas. The carbon nanotubes were deposited using pure methane plasmas. Three methods were used for the surface modification of the sample: reference substrate (silicon wafer only submitted to a chemical cleaning), silicon wafer with surface roughness generated by plasma etching, silicon wafer with a thin iron film and silicon wafer with diamond nano powder used as precursor materials. For each kind of silicon wafer surface, the carbon nanotubes were deposited with two different deposition times (two and three hours). The carbon nanotubes structural characteristics were analyzed by Atomic Force Microscope and Scanning Electronic Microscope. The carbon nanotubes electrical characteristics were observed by Raman Spectroscopy and the carbon nanotubes electro-optical properties were analyzed by current vs voltage electrical measurements and photo-luminescence spectroscopy measurements. The photoelectric effect in the carbon nanotubes were determined by photo-induced current measurements. In this work, we obtained carbon nanotubes with semiconductor properties and carbon nanotubes with metallic properties. The electro-optical effects depend strongly on the substrate preparation and the deposition parameters of the carbon nanotubes. The carbon nanotubes are high aligned and show singular properties that can be used for many applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574221)the Graduate Student’s Research and Innovation Fund of Sichuan University,China(Grant No.2018YJSY008).
文摘Fe^2+:ZnSe thin films are prepared on sapphire substrate at room temperature by electron beam evaporation and then annealed in vacuum(about 1×10^-4 Pa)at different temperatures.The influences of thermal annealing on the structural and optical properties of these films such as grain size and optical transmittance are investigated.The x-ray diffraction patterns show that the Fe2+:ZnSe thin film is preferred to be oriented along the(111)plane at different annealing temperatures.After the film is annealed,the full-width-at-half-maximum(FWHM)of the x-ray diffraction peak profile(111)of the film decreases and its crystal quality is improved.Scanning electron microscope images show that the films are more dense after being annealed.Finally,the sample is used as a saturable absorber in ZBLAN fiber laser.The annealed Fe^2+:ZnSe thin films can be used to realize stable Q-switching modulation on ZBLAN fiber laser.The results demonstrate that the Fe2+:ZnSe thin film is a promising material for generating the high-power pulses of mid-infrared Q-switched fiber lasers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61378075,61377032,11604327,and 61475152)the Science Foundation of State Key Laboratory of Applied Optics,China
文摘Liquid crystal(LC) compound with isothiocyanate and naphthyl group is an attractive high birefringence LC material,and can be used in optical devices. In this paper, the electro-optical properties of a series of this type of LC compounds were investigated. The melting points and enthalpy values of these LC compounds were higher than those of corresponding compounds with the phenyl group. These compounds exhibited high birefringence with a maximum value of 0.66. Fluorine substitution in the molecular almost does not affect the birefringence value. When these LC compounds with the naphthyl group were dissolved in a commercial LC mixture, the electro-optical properties depending on temperature were investigated. In the low-temperature region, LC mixtures with the naphthyl-group LC compounds exhibited higher viscosity than pure commercial LCs. In the high-temperature region, viscosity values very closely approached each other. When response performance was investigated, figure-of-merit(FoM) values were measured. The Fo M values of LC mixtures containing LC compounds with naphthyl group were lower than those of reference benzene LCs in the low-temperature region. However, in the high-temperature region, the results were reversed. These isothiocyanate LC compounds with naphthyl group can be applied in special fast-response LC device, particularly the ones used under high-temperature conditions.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61308009,61405047 and 50990301the Fundamental Research Funds for the Central Universities under Grant Nos HIT.NSRIF.2014044 and HIT.NSRIF.2015042the Science Fund for Outstanding Youths of Heilongjiang Province under Grant No JQ201310
文摘We demonstrate a mid-IR ZnGeP2 (ZGP) optical parametric oscillator (OPO) pumped by a dual-end-pumped actively aeoasto-optie Q-switched Ho:YAG ceramic laser. The maximum average output power of 35 W is obtained at a pulse repetition frequency of 20 kHz from the Ho:YAG ceramic laser. Under the maximum incident pump power of Ho:YAG ceramic laser, the maximum output power of 14 W is obtained from the ZGP OPO, corresponding to the slope efficiency of 49.6% with respect to the incident pump power. The wavelength can be tuned from 3.5 μm to 4.2μm (signal), corresponding to 5.24.1 μm (idler). The beam quality M2 is less than 2.3 from the ZGP OPO.
基金supported by Program for New Century Excellent Talents in University under Grand No. NCET-06-0925.
文摘High-speed and wide-band LiNbO3 waveguide electro-optic intensity modulator has drawn great attention in the field of optical fiber communication and sensor. This paper reports the research results on the measurement of frequency shift characteristics of Mach-Zehnder electro-optic intensity modulator. Two measurement methods of frequency shift characteristics for high and low frequency modulations are studied in theory and experiment and demonstrate different results. The realization of a multi-wavelength optical source based on Mach-Zehnder electro-optic intensity modulator has been introduced. The technique to reach the maximum intensity for interesting shift frequency, particularly for heterodyne detection of Brillouin distributed optical fiber sensing, has been given.
基金Supported by the Chinese University Innovation Program from Ministry of Education of China(No.706017)
文摘We made a comprehensive investigation on the electro-optic(EO) properties of hybrid sol-gel silica film doped with Dispersed Red 1 dye(DR1/SiO2). An important finding is that the dipoles which don't orient along the direction of corona poling field in the films can be instantaneously poled by alternate modulation electrical field. This instant poling effect results in the EO coefficients dependent on the frequency and intensity of alternate modulation electric field, and some experiments have proved it. We also investigated the electro-optic coefficients and thickness of films at different stir temperatures(Ts) of start solution and at different number densities of DR1. Experimentally the DR1 number density was optimized to an order of 1021/cm^3 and a large EO coefficient of γ33= 37 pm/V for DR1/SiO2 film was measured by simple reflection technique at 1 kHz frequencies of modulation electric field. These findings may benefit the practical application of DR1/SiO2 films in the field of EO modulator and EO probing.
基金supported by the National Natural Science Foundation of China (Grant No 60577044)the State Key Development Program for Basic Research of China (Grant No 2007CB613405)the National High Technology Research and Development Program of China (Grant No 2006AA032424)
文摘A 2 × 2 electro-optic switch is experimentally demonstrated using the optical structure of a Mach-Zehnder interferometer (MZI) based on a submicron rib waveguide and the electrical structure of a PIN diode on silicon-on-insulator (SOI). The switch behaviour is achieved through the plasma dispersion effect of silicon. The device has a modulation arm of 1 mm in length and cross-section of 400 nm×340 nm. The measurement results show that the switch has a VπLπ figure of merit of 0.145 V.cm and the extinction ratios of two output ports and cross talk are 40 dB, 28 dB and -28 dB, respectively. A 3 dB modulation bandwidth of 90 MHz and a switch time of 6.8 ns for the rise edge and 2.7 ns for the fall edge are also demonstrated.
基金support for this work through Grant, HiCoE (PRC-2022)the Universiti Malaya for the funding of this work through Grant Nos. RU005-2021 and MGO23-2022。
文摘We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm.
文摘Fluorinated smectic liquid crystals each with a biphenyl benzoate rigid core are investigated. Molecular structures of the studied compounds have difference only in fluorine position and the length of the carbon chain. Dielectric relaxation study and electro-optical measurements are carried out with the classical SSFLC geometry. The field-induced phase transitions are studied and the(E,T) phase diagram is established.