针对强混响背景下经典的最小均方误差(Least Mean Square,LMS)滤波算法难以有效地实现信混分离的问题,提出一种基于分数阶傅里叶变换的自适应LMS算法。首先将混响信号和自适应LMS滤波算法中的参考信号进行分数阶傅里叶变换,寻找最优变换...针对强混响背景下经典的最小均方误差(Least Mean Square,LMS)滤波算法难以有效地实现信混分离的问题,提出一种基于分数阶傅里叶变换的自适应LMS算法。首先将混响信号和自适应LMS滤波算法中的参考信号进行分数阶傅里叶变换,寻找最优变换域,并在分数阶域进行带通滤波,然后将得到的信号进行分数阶傅里叶反变换,最后将基于正态分布曲线的变步长LMS算法应用于此混响条件下进行滤波。仿真和海试数据验证结果表明,在信混比为0 dB的情况下,算法仍可以有效地滤除混响,使信混比提高6 dB。展开更多
文摘针对强混响背景下经典的最小均方误差(Least Mean Square,LMS)滤波算法难以有效地实现信混分离的问题,提出一种基于分数阶傅里叶变换的自适应LMS算法。首先将混响信号和自适应LMS滤波算法中的参考信号进行分数阶傅里叶变换,寻找最优变换域,并在分数阶域进行带通滤波,然后将得到的信号进行分数阶傅里叶反变换,最后将基于正态分布曲线的变步长LMS算法应用于此混响条件下进行滤波。仿真和海试数据验证结果表明,在信混比为0 dB的情况下,算法仍可以有效地滤除混响,使信混比提高6 dB。