期刊文献+
共找到19,722篇文章
< 1 2 250 >
每页显示 20 50 100
Evidence of guide field magnetic reconnection in flapping current sheets
1
作者 YunTian Hou SuPing Duan +1 位作者 Lei Dai Chi Wang 《Earth and Planetary Physics》 EI CAS CSCD 2024年第4期650-658,共9页
Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection ... Based on current sheet flapping motion on 27 August 2018 in the dusk flank magnetotail,as recorded by instruments aboard Magnetospheric Multiscale(MMS)spacecraft,we present the first study of guide field reconnection observed in the flux rope embedded in kink-like flapping current sheets near the dusk-side flank of the magnetotail.Unlike more common magnetotail reconnections,which are symmetric,these asymmetric small-scale(λ_(i)~650 km)reconnections were found in the highly twisted current sheet when the direction normal to the sheet changes from the Z direction into the Y direction.The unique feature of this unusual reconnection is that the reconnection jets are along the Z direction-different from outflow in the X direction,which is the more usual situation.This vertical reconnection jet is parallel or antiparallel to the up-and-down motion of the tail’s current sheet.The normalized reconnection rate R is estimated to be~0.1.Our results indicate that such asymmetric reconnections can significantly enlarge current sheet flapping,with large oscillation amplitudes.This letter presents direct evidence of guide field reconnection in a highly twisted current sheet,characterized by enlarged current sheet flapping as a consequence of the reconnection outflow. 展开更多
关键词 magnetic reconnection MAGNETOTAIL current sheet
下载PDF
Study of strip-shaped chromatic aberration defects on the surface of an electro-galvanized fingerprint-resistant sheet
2
作者 HE Yutian HUANG Shengbiao ZHANG Baoping 《Baosteel Technical Research》 CAS 2023年第2期7-14,共8页
Strip-shaped chromatic aberration defects on the surface of an electro-galvanized fingerprint-resistant sheet were systematically studied using Thermo-Calc thermodynamic calculations,scanning electron microscope and X... Strip-shaped chromatic aberration defects on the surface of an electro-galvanized fingerprint-resistant sheet were systematically studied using Thermo-Calc thermodynamic calculations,scanning electron microscope and X-ray diffractometer analyses,and rapid heat treatment simulation technology.The formation mechanism of these defects was also analyzed.The results show a strong correlation between the defects and the uneven distribution of the Fe(001)component on the surface of the steel substrate.The relatively high proportion of Fe(001)components on the surface of the steel substrate affects the distribution density of the Zn crystal cells in different orientations during the electrodeposition process,which causes the reflection intensity of the light of the galvanized layer to differ from various visual perspectives,and macroscopic strip-shaped chromatic aberration defects are finally formed.The high proportion of the Fe(001)component on the surface of the steel substrate is mainly related to the following two factors.First,when the strip steel is hot-rolled,the finishing hot-rolling temperature is close to theγ→αphase transition temperature.When the local temperature on the upper surface of the strip steel is low,γ+αtwo-phase rolling easily occurs,and this results in an uneven stress distribution between theγandαphases after the hot-rolling process.This uneven distribution of hot-rolling stress results in the formation of a coarse grain structure in the local area on the surface of the hot-rolled sheet,which strongly affects the subsequent cold rolling and annealing process,and the annealed steel sheet substrate ultimately contains a greater proportion of the Fe(001)component.And second,a fast cooling rate(>10 K/s)during the slow cooling stage in the continuous annealing process inhibits the transformation of the Fe(001)to the Fe(111)component on the surface of the cold-rolled steel sheet,and it is then not possible to effectively eliminate the influence of the unevenly distributed Fe(001)component on the surface of the annealed steel sheet(originating from the uneven hot-rolled microstructure).This uneven distribution of the Fe(001)component on the surface of the annealed steel sheet following the continuous annealing heat treatment has a strong effect on the electrodeposition behavior of the Zn crystal cell in the subsequent electroplating process and the formation of macroscopic strip-shaped chromatic aberration defects on the surface of electro-galvanized fingerprint-resistant sheet. 展开更多
关键词 electro-galvanized fingerprint-resistant sheet strip-shaped chromatic aberration defects texture
下载PDF
Novel Fabrication Technique Takes Transition Metal Telluride Nanosheets from Lab to Mass Production
3
作者 WU Zhongshuai 《Bulletin of the Chinese Academy of Sciences》 2024年第2期104-105,共2页
Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across various fields.Still,until now,mass fabrication has been impossible,leaving the material as some... Transition metal telluride nanosheets have shown enormous promise for fundamental research and other applications across various fields.Still,until now,mass fabrication has been impossible,leaving the material as something of a laboratory curiosity rather than an industrial reality.But a team of researchers from the Dalian Institute of Chemical Physics(DICP)of the Chinese Academy of Sciences has recently developed a novel exfoliation process–using chemical solutions to peel off thin layers from their parent compounds,creating atomically thin sheets–that looks set to finally deliver on the ultra-thin substance’s promise. 展开更多
关键词 TRANSITION SOMETHING sheets
下载PDF
Self-Oscillated Growth Formation of Standing Ultrathin Nanosheets out of Uniform Ge/Si Superlattice Nanowires
4
作者 甘鑫 安钧洋 +5 位作者 王军转 刘宗光 徐骏 施毅 陈坤基 余林蔚 《Chinese Physics Letters》 SCIE EI CAS CSCD 2023年第6期27-32,共6页
Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures.A self-oscillating growth phenomenon of cata... Self-oscillation is an intriguing and omnipresent phenomenon that governs a broad range of growth dynamics and formation of nanoscale periodic and delicate heterostructures.A self-oscillating growth phenomenon of catalyst droplets,consuming surface-coating a-Si/a-Ge bilayer,is exploited to accomplish a high-frequency alternating growth of ultrathin crystalline Si and Ge(c-Si/c-Ge)nano-slates,with Ge-rich layer thickness of 14–19 nm,embedded within a superlattice nanowire structure,with pre-known position and uniform channel diameter.A subsequent selective etching of the Ge-rich segments leaves a chain of ultrafine standing c-Si nanosheets down to~6 nm thick,without the use of any expensive high-resolution lithography and growth modulation control.A ternary-phase-competition model has been established to explain the underlying formation mechanism of this nanoscale self-oscillating growth dynamics.It is also suggested that these ultrathin nanosheets could help to produce ultrathin fin-channels for advanced electronics,or provide size-specified trapping sites to capture and position hetero nanoparticle for high-precision labelling or light emission. 展开更多
关键词 OSCILLATING consuming sheets
下载PDF
Shear Strengthening of Reinforced Concrete (RC) with FRP Sheets Using Different Guidelines
5
作者 Bashir H. Osman 《World Journal of Engineering and Technology》 2023年第2期281-292,共12页
The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete str... The aim of this study is to investigate the influence of fiber reinforcement polymer (FRP) on shear behavior of reinforcement concrete (RC) beams with various guidelines. The FRP thickness, beam depth and concrete strength at ultimate load are considered as main strength parameters. A finite element (FE) by using ANSYS computer program was used to analyze the reinforced concrete beams. The numerical models were used to investigate the effect of beam depth, concrete strength, CFRP sheet configuration, and CFRP sheet thickness on the behavior of reinforced concrete beams strengthened with CFRP sheets compared with different guidelines. The results from ACI guideline show little difference compared with FE, which make it suitable for RC beams strengthened with FRP sheets. 展开更多
关键词 FRP sheets Strengthening RC Beams ANSYS ACI
下载PDF
On the Vortex Sheets of Compressible Flows
6
作者 Robin Ming Chen Feimin Huang +1 位作者 Dehua Wang Difan Yuan 《Communications on Applied Mathematics and Computation》 2023年第3期967-986,共20页
This paper provides a review of the recent results on the stability of vortex sheets in compressible flows.Vortex sheets are contact discontinuities of the underlying flows.The vortex sheet problem is a free boundary ... This paper provides a review of the recent results on the stability of vortex sheets in compressible flows.Vortex sheets are contact discontinuities of the underlying flows.The vortex sheet problem is a free boundary problem with a characteristic boundary and is challenging in analysis.The formulation of the vortex sheet problem will be introduced.The linear stability and nonlinear stability for both the two-dimensional two-phase compressible flows and the two-dimensional elastic flows are summarized.The linear stability of vortex sheets for the three-dimensional elastic flows is also presented.The difficulties of the vortex sheet problems and the ideas of proofs are discussed. 展开更多
关键词 Vortex sheets Contact discontinuities Stability and instability Loss of derivatives Two-phase flows Elastic flows
下载PDF
Metal Organic Framework Nanosheets Employed as Ion Carriers for Self-Optimized Zinc Anode
7
作者 ZHU Kaiyue 《Bulletin of the Chinese Academy of Sciences》 2023年第3期174-175,共2页
Aqueous rechargeable zinc ion batteries are promising in electric grid storage due to their low cost and intrinsic safety.However,the practical implementation is hindered by the poor reversibility of the zinc anode,pr... Aqueous rechargeable zinc ion batteries are promising in electric grid storage due to their low cost and intrinsic safety.However,the practical implementation is hindered by the poor reversibility of the zinc anode,primarily caused by the chaotic Zn deposition present as dendrite and side reactions. 展开更多
关键词 ZINC primarily sheets
下载PDF
A new model of flow over stretching(shrinking)and porous sheet with its numerical solutions
8
作者 Azhar Ali Dil Nawaz Khan Marwat Saleem Asghar 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期381-397,共17页
The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and ... The viscous fluid flow and heat transfer over a stretching(shrinking)and porous sheets of nonuniform thickness are investigated in this paper.The modeled problem is presented by utilizing the stretching(shrinking)and porous velocities and variable thickness of the sheet and they are combined in a relation.Consequently,the new problem reproduces the different available forms of flow motion and heat transfer maintained over a stretching(shrinking)and porous sheet of variable thickness in one go.As a result,the governing equations are embedded in several parameters which can be transformed into classical cases of stretched(shrunk)flows over porous sheets.A set of general,unusual and new variables is formed to simplify the governing partial differential equations and boundary conditions.The final equations are compared with the classical models to get the validity of the current simulations and they are exactly matched with each other for different choices of parameters of the current problem when their values are properly adjusted and manipulated.Moreover,we have recovered the classical results for special and appropriate values of the parameters(δ_(1),δ_(2),δ_(3),c,and B).The individual and combined effects of all inputs from the boundary are seen on flow and heat transfer properties with the help of a numerical method and the results are compared with classical solutions in special cases.It is noteworthy that the problem describes and enhances the behavior of all field quantities in view of the governing parameters.Numerical result shows that the dual solutions can be found for different possible values of the shrinking parameter.A stability analysis is accomplished and apprehended in order to establish a criterion for the determinations of linearly stable and physically compatible solutions.The significant features and diversity of the modeled equations are scrutinized by recovering the previous problems of fluid flow and heat transfer from a uniformly heated sheet of variable(uniform)thickness with variable(uniform)stretching/shrinking and injection/suction velocities. 展开更多
关键词 permeable stretching(shrinking)sheets sheet of variable thickness heat transfer numerical(dual)solutions stability analysis
下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles
9
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier Numerical simulation Windproof efficiency Sedimentation erosion
下载PDF
Exact solutions for magnetohydrodynamic nanofluids flow and heat transfer over a permeable axisymmetric radially stretching/shrinking sheet
10
作者 U.S.Mahabaleshwar G.P.Vanitha +2 位作者 L.M.Pérez Emad H.Aly I.Pop 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期108-114,共7页
We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the correspon... We report on the magnetohydrodynamic impact on the axisymmetric flow of Al_(2)O_(3)/Cu nanoparticles suspended in H_(2)O past a stretched/shrinked sheet.With the use of partial differential equations and the corresponding thermophysical characteristics of nanoparticles,the physical flow process is illustrated.The resultant nonlinear system of partial differential equations is converted into a system of ordinary differential equations using the suitable similarity transformations.The transformed differential equations are solved analytically.Impacts of the magnetic parameter,solid volume fraction and stretching/shrinking parameter on momentum and temperature distribution have been analyzed and interpreted graphically.The skin friction and Nusselt number were also evaluated.In addition,existence of dual solution was deduced for the shrinking sheet and unique solution for the stretching one.Further,Al_(2)O_(3)/H_(2)O nanofluid flow has better thermal conductivity on comparing with Cu/H_(2)O nanofluid.Furthermore,it was found that the first solutions of the stream are stable and physically realizable,whereas those of the second ones are unstable. 展开更多
关键词 MAGNETOHYDRODYNAMIC NANOFLUID stretching/shrinking sheet axisymmetric flow analytical solution suction/injection
下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study
11
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation Flow field characteristics Protection benefits
下载PDF
Carbon Fiber Breakage Mechanism in Aluminum(Al)/Carbon Fibers(CFs) Composite Sheet during Accumulative Roll Bonding(ARB) Process
12
作者 胡淑芬 SUN Zhenzhong +3 位作者 SHEN Fanghua DENG Jun 杨卫平 杨浩坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期167-173,共7页
We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surf... We put forward a method of fabricating Aluminum(Al)/carbon fibers(CFs) composite sheets by the accumulative roll bonding(ARB) method. The finished Al/CFs composite sheet has CFs and pure Al sheets as sandwich and surface layers. After cross-section observation of the Al/CFs composite sheet, we found that the CFs discretely distributed within the sandwich layer. Besides, the tensile test showed that the contribution of the sandwich CFs layer to tensile strength was less than 11% compared with annealed pure Al sheet. With ex-situ observation of the CFs breakage evolution with-16%,-32%, and-45% rolling reduction during the ARB process, the plastic instability of the Al layer was found to bring shear damages to the CFs. At last, the bridging strengthening mechanism introduced by CFs was sacrificed. We provide new insight into and instruction on Al/CFs composite sheet preparation method and processing parameters. 展开更多
关键词 Al/CFs composite sheet accumulative roll bonding tensile strength plastic instability carbon fiber breakage
下载PDF
Migration and role of zinc in biogeochemical cycles in the Antarctic Ice Sheet and the Southern Ocean
13
作者 LIU Jingwen LI Chuanjin +4 位作者 DU Zhiheng SHI Guitao DING Minghu SUN Bo XIAO Cunde 《Advances in Polar Science》 CSCD 2024年第2期157-177,共21页
Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its ... Zinc(Zn),a widespread metal in the Earth’s crust,serves as a crucial nutrient in the Southern Ocean’s primary production.Studies on Zn in Antarctic snow and ice offer insights into the origins of this metal and its transport routes,as well as its impact on the biogeochemical processes within the Antarctic atmosphere–land–ocean system.This review examines research on the spatial and temporal distribution of Zn in Antarctic snow and ice,as well as in Southern Ocean waters.It includes an overview of advanced methods for sampling and analyzing Zn,along with explanations for the observed variations.The review also discusses various sources of Zn as a nutrient to the Southern Ocean.Finally,it addresses prospective issues related to the use of Zn isotopes in identifying atmospheric sources and their biogeochemical effects on the development of the Southern Ocean ecosystem. 展开更多
关键词 ZINC biogeochemical cycles Antarctic Ice sheet Southern Ocean
下载PDF
Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/ Shrinking Sheet with a Heat Source or Sink
14
作者 Parakapali Roja Shaik Mohammed Ibrahim +1 位作者 Thummala Sankar Reddy Giulio Lorenzini 《Fluid Dynamics & Materials Processing》 EI 2024年第2期257-274,共18页
This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into accoun... This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution. 展开更多
关键词 Chemical(first order homogeneous)reaction MAGNETOHYDRODYNAMICS MICROPOLAR nanofluid stretching/shrinking sheet heat source
下载PDF
Some recent advances in remote sensing-based monitoring of changes in the Greenland Ice Sheet
15
作者 FENG Tiantian JIA Jinyu +5 位作者 WANG Wei YU Zeran LIU Xingchen LI Guojun GU Yuanyuan LI Rongxing 《Advances in Polar Science》 CSCD 2024年第2期275-280,共6页
The mass balance of the Greenland Ice Sheet(GrIS)plays a crucial role in global sea level change.Since the 1960s,remote sensing missions have been providing extensive and continuous observation data for change monitor... The mass balance of the Greenland Ice Sheet(GrIS)plays a crucial role in global sea level change.Since the 1960s,remote sensing missions have been providing extensive and continuous observation data for change monitoring of the GrIS.In this paper,we present our recent research results from remote sensing-based GrIS change monitoring.First,historical satellite data are processed and used to fill data gaps and are combined with existing partial maps,completing an ice velocity map of the GrIS from the 1960s to 1980s.This map provides valuable data for estimating the historical mass balance of Greenland.Second,the monthly gravimetry-based mass balance of the GrIS from 2002 to 2020 is estimated by combining Gravity Recovery and Climate Experiment(GRACE)and GRACE Follow On(GRACE-FO)data.It is found that the GrIS has lost a total mass of approximately 4443±75 Gt during this period.Third,based on Global Land Ice Measurements from Space(GLIMS),an updated Greenland glacier inventory is achieved utilizing data collected between 2006 and 2020.This inventory provides more detailed and up-to-data glacier boundaries of Greenland.Overall,these advances provide essential data support for estimating the mass balance of the GrIS,contributing to the advancement of research on global sea level change. 展开更多
关键词 Greenland Ice sheet remote sensing change monitoring ice velocity satellite gravimetry glacier inventory
下载PDF
A Physical Core-Loss Model for Laminated Magnetic Sheet Steels
16
作者 Kuofeng Chen 《Journal of Power and Energy Engineering》 2024年第3期115-123,共9页
A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation pro... A full-frequency instant core-loss equation built from the induction physical model of magnetic materials, where the iron loss, eddy loss, and hysteresis loss no longer have an integral term, and this new equation provides high simulation accuracy and performs dynamic core loss analysis on non-sinusoidal or pulse magnetic fields. The simulation examples use a high-grade electrical steel sheet 65CS400 by Epstein experimental data covering magnetic field 0.1 - 1.8 T and frequency 50 - 5000 Hz, and the average error of the simulated core loss is less than 4%. Since the simulation is converged by magnetic physical parameters, so the physical relevance of the similar laminated materials can be compared with the coefficient results. . 展开更多
关键词 Core Loss Hysteresis Loss Electrical Steel sheet
下载PDF
Innovative Techniques Unveiled in Advanced Sheet Pile Curtain Design
17
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期1-37,共37页
This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equi... This thorough review explores the complexities of geotechnical engineering, emphasizing soil-structure interaction (SSI). The investigation centers on sheet pile design, examining two primary methodologies: Limit Equilibrium Methods (LEM) and Soil-Structure Interaction Methods (SSIM). While LEM methods, grounded in classical principles, provide valuable insights for preliminary design considerations, they may encounter limitations in addressing real-world complexities. In contrast, SSIM methods, including the SSI-SR approach, introduce precision and depth to the field. By employing numerical techniques such as Finite Element (FE) and Finite Difference (FD) analyses, these methods enable engineers to navigate the dynamics of soil-structure interaction. The exploration extends to SSI-FE, highlighting its essential role in civil engineering. By integrating Finite Element analysis with considerations for soil-structure interaction, the SSI-FE method offers a holistic understanding of how structures dynamically interact with their geotechnical environment. Throughout this exploration, the study dissects critical components governing SSIM methods, providing engineers with tools to navigate the intricate landscape of geotechnical design. The study acknowledges the significance of the Mohr-Coulomb constitutive model while recognizing its limitations, and guiding practitioners toward informed decision-making in geotechnical analyses. As the article concludes, it underscores the importance of continuous learning and innovation for the future of geotechnical engineering. With advancing technology and an evolving understanding of soil-structure interaction, the study remains committed to ensuring the safety, stability, and efficiency of geotechnical structures through cutting-edge design and analysis techniques. 展开更多
关键词 sheet Pile Curtain Design Soil-Structure Interaction Geotechnical Engineering Advanced Design Techniques Finite Element Analysis Innovative Geotechnical Methods
下载PDF
Advanced Sheet Pile Curtain Design: Case Study of Cotonou East Corniche
18
作者 Peace Sèna Hounkpe Guy Oyéniran Adéoti +1 位作者 Patrick Oniakitan Mondoté Éric Adéchina Alamou 《Open Journal of Civil Engineering》 2024年第1期38-64,共27页
This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient... This paper delves into the critical aspects of sheet pile walls in civil engineering, highlighting their versatility in soil protection, retention, and waterproofing, all while emphasizing sustainability and efficient construction practices. The paper explores two fundamental approaches to sheet pile design: limit equilibrium methods and numerical techniques, with a particular focus on finite element analysis. Utilizing the robust PLAXIS 2016 calculation code based on the finite element method and employing a simplified elastoplastic model (Mohr-Coulomb), this study meticulously models the interaction between sheet pile walls and surrounding soil. The research offers valuable insights into settlement and deformation patterns that adjacent buildings may experience during various construction phases. The central objective of this paper is to present the study’s findings and recommend potential mitigation measures for settlement effects on nearby structures. By unraveling the intricate interplay between sheet pile wall construction and neighboring buildings, the paper equips engineers and practitioners to make informed decisions that ensure the safety and integrity of the built environment. In the context of the Cotonou East Corniche development, the study addresses the limitations of existing software, such as RIDO, in predicting settlements and deformations affecting nearby buildings due to the substantial load supported by sheet pile walls. This information gap necessitates a comprehensive study to assess potential impacts on adjacent structures and propose suitable mitigation measures. The research underscores the intricate dynamics between sheet pile wall construction and its influence on the local environment. It emphasizes the critical importance of proactive engineering and vigilant monitoring in managing and mitigating potential hazards to nearby buildings. To mitigate these risks, the paper recommends measures such as deep foundations, ground improvement techniques, and retrofitting. The findings presented in this study contribute significantly to the field of civil engineering and offer invaluable insights into the multifaceted dynamics of construction-induced settlement. The study underscores the importance of continuous evaluation and coordination between construction teams and building owners to effectively manage the impacts of sheet pile wall construction on adjacent structures. 展开更多
关键词 sheet Pile Walls and Structural Analysis Soil-Structure Interaction Modeling Structural Sustainability Cotonou East Corniche Sustainable Construction Plaxis Calculation Code Settlement Mitigation
下载PDF
Mixed convectional and chemical reactive flow of nanofluid with slanted MHD on moving permeable stretching/shrinking sheet through nonlinear radiation,energy omission
19
作者 Saleem Nasir Sekson Sirisubtawee +1 位作者 Pongpol Juntharee Taza Gul 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期193-202,共10页
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ... Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement. 展开更多
关键词 hybrid nanofluid(SWCNT+MWCNT/H_(2)O) velocity slip conditions nonlinear thermal radiation exponential stretching/shrinking sheet inclined magnetohydrodynamic(MHD)stagnation flow
下载PDF
Influence of microstructure and texture on formability of AZ31B magnesium alloy sheets 被引量:5
20
作者 张华 黄光胜 +2 位作者 宋波 张雷 孔德强 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第4期844-850,848-850,共7页
The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstruc... The effect of the repeated unidirectional bending (RUB) process and annealing on the formability of magnesium alloy sheets was investigated. The RUB process and annealing treatments produce two effects on microstructure: grain coarsening and weakening of the texture. The sheet that underwent RUB and was annealed at 300 ℃exhibits the best formability owing to the reduction of the (0002) basal texture intensity, which results in low yield strength, large fracture elongation, small Lankford value (r-value) and large strain hardening exponent (n-value). Compared with the as-received sheet, the coarse-grain sheet produced by RUB and annealing at 400 ℃ exhibits lower tensile properties but higher formability. The phenomenon is because the deformation twin enhanced by grain coarsening can accommodate the strain of thickness. 展开更多
关键词 magnesium alloy sheet repeated unidirectional bending microstructure TEXTURE FORMABILITY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部