The integrated electro-hydrostatic actuator (EHA) with variable displacement and variable rotation speed is researched. In the system, the output of the actuator is changed by controlling the rotationspeed of the br...The integrated electro-hydrostatic actuator (EHA) with variable displacement and variable rotation speed is researched. In the system, the output of the actuator is changed by controlling the rotationspeed of the brushless DC servomotor and the displacement of the servopump. The mathematical model described in state-space model is created. The system characteristics are studied based on the point of multiplicative dual-variable. And the basic method of control of the system is presented.展开更多
To improve the power density and simplify the seal structure,the Wet-Type Permanent Magnet Synchronous Motor(WTPMSM)technique has been applied to aerospace Electro-Hydrostatic Actuators(EHA).In a WTPMSM,the stator and...To improve the power density and simplify the seal structure,the Wet-Type Permanent Magnet Synchronous Motor(WTPMSM)technique has been applied to aerospace Electro-Hydrostatic Actuators(EHA).In a WTPMSM,the stator and the rotor are both immersed in the aviation hydraulic oil.Although the heat dissipation performance of the WTPMSM can be enhanced,the aviation hydraulic oil will cost an extra oil frictional loss in the narrow airgap of the WTPMSM.This paper proposes an accurate oil frictional loss model for the WTPMSM,in which the wide speed range(0–20 kr/min)and the narrowness of the airgap(0.5–1.5 mm)are its features.Firstly,the mechanism of the oil frictional loss in the airgap of the WTPMSM is revealed.Then an accurate oil frictional loss model is proposed considering the nonlinear influence caused by the Taylor vortex.Furthermore,the influence of motor dimensions on oil frictional loss is analyzed.Finally,the proposed oil frictional loss model is verified by experiments,which provides a guideline for engineers to follow in the WTPMSM design.展开更多
The electro-hydrostatic actuator (EHA) is a kind of power-by-wire (PBW) actuator that converts the electrical power into localized hydraulic power for flight control. By removing the central hydraulic power supply...The electro-hydrostatic actuator (EHA) is a kind of power-by-wire (PBW) actuator that converts the electrical power into localized hydraulic power for flight control. By removing the central hydraulic power supply together with hydraulic pipes, an EHA's reliability and efficiency are greatly improved but its frequency width and stiffness decreased. To overcome the drawback, this article proposes a novel structure of EHA associated with a power regulator. Composed of a high-pressure accumulator and a proportional valve, it can store and harness the hydraulic power flexibly according to the changing control requirements. The concept of transferred volume is put forward to estimate the capability of the power regulator. The actuator output position can be kept fixed with a hydraulic lock. The compounded control is specially developed to ensure the actuator system to operate in a correct manner. The simulation results indicate that the new-brand actuator results in efficient expanding of the system frequency width with an optimal power supply.展开更多
This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator(LS-EHA). Focusing on the slipper/s...This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator(LS-EHA). Focusing on the slipper/swashplate pair partial abrasion, which is considered as the dominant failure mode in the high-speed condition, slipper dynamic models are established. A forth sliding motion of the slipper on the swashplate surface is presented under the fact that the slipper center of mass will rotate around the center of piston ball when the swashplate angle is dynamically adjusted. Besides, extra inertial tilting moments will be produced for the slipper based on the theorem on translation of force, which will increase rapidly when LS-EHA pump operates under highspeed condition. Then, a dynamic lubricating model coupling with fluid film thickness field, temperature field and pressure field is proposed. The deformation effects caused by thermal deflection and hydrostatic pressure are considered. A numerical simulation model is established to validate the effectiveness and accuracy of the proposed model. Finally, based on the load spectrum of aircraft flight profile, the variable load conditions and the oil film characteristics are analyzed, and series of variable load rules of oil film thickness with variable speed/variable pressure/variable displacement are concluded.展开更多
The speed of an Electro-Hydrostatic Actuator(EHA) pump can recently reach 20000 r/min, and its churning losses increase obviously with an increasing speed, which results in low efficiency and thus increasing heat in a...The speed of an Electro-Hydrostatic Actuator(EHA) pump can recently reach 20000 r/min, and its churning losses increase obviously with an increasing speed, which results in low efficiency and thus increasing heat in aircraft EHA systems. In order to reduce churning losses at high speeds, more attention should be given to the design of an insert. In this paper, the effect of an insert with different design parameters on churning losses is investigated through Computational Fluid Dynamics(CFD) simulation and experiments by calculating the difference between churning losses torques of the test pump with and without the insert based on a high-speed churning losses test rig.Analytical results show that the gap between the insert and the cylinder is critical for churning losses reduction. It is found that the churning losses of the test pump can be reduced with a decreasing gap between the cylinder block and the insert at high speeds. This is because the insert can decrease the turbulence occurrence at high speeds. The results can be used for flow field analysis and optimization of the high-speed EHA pump and provide a new method for improving efficiency of high-speed EHA pumps.展开更多
文摘The integrated electro-hydrostatic actuator (EHA) with variable displacement and variable rotation speed is researched. In the system, the output of the actuator is changed by controlling the rotationspeed of the brushless DC servomotor and the displacement of the servopump. The mathematical model described in state-space model is created. The system characteristics are studied based on the point of multiplicative dual-variable. And the basic method of control of the system is presented.
基金This work was supported in part by National Natural Science Foundation of China(Nos.52177028 and U2141226)in part by Major Program of the National Natural Science Foundation of China(No.51890882)in part by Aeronautical Science Foundation of China(No.201907051002).
文摘To improve the power density and simplify the seal structure,the Wet-Type Permanent Magnet Synchronous Motor(WTPMSM)technique has been applied to aerospace Electro-Hydrostatic Actuators(EHA).In a WTPMSM,the stator and the rotor are both immersed in the aviation hydraulic oil.Although the heat dissipation performance of the WTPMSM can be enhanced,the aviation hydraulic oil will cost an extra oil frictional loss in the narrow airgap of the WTPMSM.This paper proposes an accurate oil frictional loss model for the WTPMSM,in which the wide speed range(0–20 kr/min)and the narrowness of the airgap(0.5–1.5 mm)are its features.Firstly,the mechanism of the oil frictional loss in the airgap of the WTPMSM is revealed.Then an accurate oil frictional loss model is proposed considering the nonlinear influence caused by the Taylor vortex.Furthermore,the influence of motor dimensions on oil frictional loss is analyzed.Finally,the proposed oil frictional loss model is verified by experiments,which provides a guideline for engineers to follow in the WTPMSM design.
基金National Natural Science Foundation for Distinguished Young Scholars of China (50825502)
文摘The electro-hydrostatic actuator (EHA) is a kind of power-by-wire (PBW) actuator that converts the electrical power into localized hydraulic power for flight control. By removing the central hydraulic power supply together with hydraulic pipes, an EHA's reliability and efficiency are greatly improved but its frequency width and stiffness decreased. To overcome the drawback, this article proposes a novel structure of EHA associated with a power regulator. Composed of a high-pressure accumulator and a proportional valve, it can store and harness the hydraulic power flexibly according to the changing control requirements. The concept of transferred volume is put forward to estimate the capability of the power regulator. The actuator output position can be kept fixed with a hydraulic lock. The compounded control is specially developed to ensure the actuator system to operate in a correct manner. The simulation results indicate that the new-brand actuator results in efficient expanding of the system frequency width with an optimal power supply.
基金supported by the National Natural Science Foundation of China(Nos.51620105010,51675019 and 51575019)the National Basic Research Program of China(No.2014CB046402)+1 种基金the ‘‘111" Projectthe Excellence Foundation of BUAA for PhD Students
文摘This paper presents a novel transient lubrication model for the analysis of the variable load failure mechanism of high-speed pump used in Load Sensing Electro-Hydrostatic Actuator(LS-EHA). Focusing on the slipper/swashplate pair partial abrasion, which is considered as the dominant failure mode in the high-speed condition, slipper dynamic models are established. A forth sliding motion of the slipper on the swashplate surface is presented under the fact that the slipper center of mass will rotate around the center of piston ball when the swashplate angle is dynamically adjusted. Besides, extra inertial tilting moments will be produced for the slipper based on the theorem on translation of force, which will increase rapidly when LS-EHA pump operates under highspeed condition. Then, a dynamic lubricating model coupling with fluid film thickness field, temperature field and pressure field is proposed. The deformation effects caused by thermal deflection and hydrostatic pressure are considered. A numerical simulation model is established to validate the effectiveness and accuracy of the proposed model. Finally, based on the load spectrum of aircraft flight profile, the variable load conditions and the oil film characteristics are analyzed, and series of variable load rules of oil film thickness with variable speed/variable pressure/variable displacement are concluded.
基金financial supports from the National Basic Research Program of China(973 Program)(No.2014CB046403)the National Natural Science Foundation of China(No.1737110)
文摘The speed of an Electro-Hydrostatic Actuator(EHA) pump can recently reach 20000 r/min, and its churning losses increase obviously with an increasing speed, which results in low efficiency and thus increasing heat in aircraft EHA systems. In order to reduce churning losses at high speeds, more attention should be given to the design of an insert. In this paper, the effect of an insert with different design parameters on churning losses is investigated through Computational Fluid Dynamics(CFD) simulation and experiments by calculating the difference between churning losses torques of the test pump with and without the insert based on a high-speed churning losses test rig.Analytical results show that the gap between the insert and the cylinder is critical for churning losses reduction. It is found that the churning losses of the test pump can be reduced with a decreasing gap between the cylinder block and the insert at high speeds. This is because the insert can decrease the turbulence occurrence at high speeds. The results can be used for flow field analysis and optimization of the high-speed EHA pump and provide a new method for improving efficiency of high-speed EHA pumps.