The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications.In this paper,the energetic electron detection package(EEDP)de...Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications.In this paper,the energetic electron detection package(EEDP)deployed on three Chinese navigation satellites in medium Earth orbit(MEO)is reviewed.The instrument was developed by the space science payload team led by Peking University.The EEDP includes a pinhole medium-energy electron spectrometer(MES),a high-energy electron detector(HED)based onΔE-E telescope technology,and a deep dielectric charging monitor(DDCM).The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30°field of view(FOV).The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30°cone-angle FOV.The ground test and calibration results indicate that these three sensors exhibit excellent performance.Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electron-ion spectrometer(MagEIS)of the Van Allen Probes spacecraft,with an average relative deviation of 27.3%for the energy spectra.The charging currents and voltages measured by the DDCM during storms are consistent with the highenergy electron observations of the HED,demonstrating the effectiveness of the DDCM.The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather.展开更多
The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The...The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.展开更多
The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the targe...The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.展开更多
In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concer...In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.展开更多
In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in...In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in the moving satellite networks, for improving the performance of TCP. The proposed method uses an access node satellite to cache all received packets in a short time when handover occurs and forward them out in order. To calculate the cache time accurately, this paper establishes the Bayesian based mixture model for detecting delay outliers of the entire handover scheme. In view of the outliers' misjudgment, an updated classification threshold and the sliding window has been suggested to correct category collections and model parameters for the purpose of quickly identifying exact compensation delay in the varied network load statuses. Simulation shows that, comparing to average processing delay detection method, the average accuracy rate was scaled up by about 4.0%, and there is about 5.5% cut in error rate in the meantime. It also behaves well even though testing with big dataset. Benefiting from the advantage of the proposed scheme in terms of performance, comparing to conventional independent handover and network controlled synchronizedhandover in simulated LEO satellite networks, the proposed independent handover with PCF eliminates packet out-of-order issue to get better improvement on congestion window. Eventually the average delay decreases more than 70% and TCP performance has improved more than 300%.展开更多
Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in develope...Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.展开更多
On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result S...On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result Shows that this novel algorithm has a 97% success rate in outlier identification and that be efficiently used for pre-processing real satellite gravity gradiometry data.展开更多
The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detecti...The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.展开更多
In this paper,a method for spoofing detection based on the variation of the signal’s carrier-to-noise ratio(CNR)is proposed.This method leverages the directionality of the antenna to induce varying gain changes in th...In this paper,a method for spoofing detection based on the variation of the signal’s carrier-to-noise ratio(CNR)is proposed.This method leverages the directionality of the antenna to induce varying gain changes in the signals across different incident directions,resulting in distinct CNR variations for each signal.A model is developed to calculate the variation value of the signal CNR based on the antenna gain pattern.This model enables the differentiation of the variation values of the CNR for authentic satellite signals and spoofing signals,thereby facilitating spoofing detection.The proposed method is capable of detecting spoofing signals with power and CNR similar to those of authentic satellite signals.The accuracy of the signal CNR variation value calculation model and the effectiveness of the spoofing detection method are verified through a series of experiments.In addition,the proposed spoofing detection method works not only for a single spoofing source but also for distributed spoofing sources.展开更多
The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Si...The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Since buildings are inherently elevated objects, these images need to be co-registered with their elevation data for reliable building detection results. However, accurate co-registration is extremely difficult for off-nadir VHR images acquired over dense urban areas. Therefore, this research proposes a Disparity-Based Elevation Co-Registration (DECR) method for generating a Line-of-Sight Digital Surface Model (LoS-DSM) to efficiently achieve image-elevation data co-registration with pixel-level accuracy. Relative to the traditional photogrammetric approach, the RMSE value of the derived elevations is found to be less than 2 pixels. The applicability of the DECR method is demonstrated through elevation-based building detection (EBD) in a challenging dense urban area. The quality of the detection result is found to be more than 90%. Additionally, the detected objects were geo-referenced successfully to their correct ground locations to allow direct integration with other maps. In comparison to the original LoS-DSM development algorithm, the DECR algorithm is more efficient by reducing the calculation steps, preserving the co-registration accuracy, and minimizing the need for elevation normalization in dense urban areas.展开更多
The influence of the single photon laser altimeter range-gate width on the detection probability and ranging accuracy is discussed and analyzed,according to the LiDAR equation,single photon detection equation and the ...The influence of the single photon laser altimeter range-gate width on the detection probability and ranging accuracy is discussed and analyzed,according to the LiDAR equation,single photon detection equation and the Monte Carlo method to simulate the experiment.The simulated results show that the probability of detection is not affected by the range gate,while the probability of false alarm is relative to the gate width.When the gate width is 100 ns,the ranging accuracy can accord with the requirements of satellite laser altimeter.But when the range gate width exceeds 400 ns,ranging accuracy will decline sharply.The noise ratio will be more as long as the range gate to get larger,so the refined filtering algorithm during the data processing is important to extract the useful photons effectively.In order to ensure repeated observation of the same point for 25 times,we deduce the quantitative relation between the footprint size,footprint,and frequency repetition according to the parameters of ICESat-2.The related conclusions can provide some references for the design and the development of the domestic single photon laser altimetry satellite.展开更多
The minimum mean square error-successive interference cancellation( MMSE-SIC) multiuser detection algorithm has high complexity and long processing latency. A multiuser detection algorithm is proposed for multi-beam s...The minimum mean square error-successive interference cancellation( MMSE-SIC) multiuser detection algorithm has high complexity and long processing latency. A multiuser detection algorithm is proposed for multi-beam satellite systems in order to decrease the complexity and latency. The spot beams are grouped base on the distance between them in the proposed algorithm. Some groups are detected in parallel after a crucial group-wise interference cancellation. Furthermore, the multi-stage structure is introduced to improve the performance. Simulation results show that the proposed algorithm can achieve better performance with less complexity compared with the existing group detection algorithm. Moreover,the proposed algorithm using one stage can reduce the complexity over the fast MMSE-SIC and existing group detection algorithm by 9% and20. 9%. The processing latency is reduced significantly compared with the MMSE-SIC.展开更多
Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud de...Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.展开更多
The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera...The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.展开更多
An iterative detection and decoding algorithm with outer code decision feedback is proposed for the dual polarized( DP) land mobile satellite( LMS) MIMO systems using concatenated codes. A feedback structure is added ...An iterative detection and decoding algorithm with outer code decision feedback is proposed for the dual polarized( DP) land mobile satellite( LMS) MIMO systems using concatenated codes. A feedback structure is added after the outer decoder in the proposed algorithm. The feedback information is exploited to control the detecting list in the MIMO detector and reduce the number of symbols which have to be processed at each iteration. As a result,the computational complexity is reduced. Meanwhile,the successfully decoded outer code words are used to calculate the more reliable initial information for the inner decoder and the system performance can be improved by this step. The simulation results show that the proposed algorithm can reduce the computational complexity compared to the traditional iterative detection and decoding algorithm and achieve better performance.展开更多
The gradual deployment of Low-Earth Orbit(LEO)mega constellations with inter-satellite links(ISLs)promises ubiquitous,low-latency,and high-throughput satellite network services.However,networked LEO satellites with IS...The gradual deployment of Low-Earth Orbit(LEO)mega constellations with inter-satellite links(ISLs)promises ubiquitous,low-latency,and high-throughput satellite network services.However,networked LEO satellites with ISLs are also at risk of routing attacks such as hijacking.Existing defenses against route hijacking in terrestrial networks can hardly work for the LEO satellite network due to its high spatiotemporal dynamics.To deal with it,we propose RPD,a high-risk routing path detection method for LEO mega-constellation networks.RPD detects abnormal high-risk LEO network paths by checking the consistency between the path delay and the geographical distance.This is efficiently achieved by combining in-band measurements and out-of-band statistical processing to detect the anomaly of the clustering feature in the reference delay matrix.RPD avoids the recalculation of the header cryptographic marks when the handover occurs,thus greatly reducing the cost and improving the performance of highrisk path detection.Experiments showed that the proposed RPD mechanism achieves an average detection accuracy of 91.64%under normal network conditions,and maintain about 89%even when congestion occurs in multiple areas of the network and measurement noise is considered.In addition,RPD does not require any cryptographic operation on the intermediate node,only minimal communication cost with excellent scalability and deployability.展开更多
In this paper, a method to detect a decrease in the output power of photovoltaic systems is proposed. This method is based on using satellite irradiance data. In addition, fault detection is carried out with only one ...In this paper, a method to detect a decrease in the output power of photovoltaic systems is proposed. This method is based on using satellite irradiance data. In addition, fault detection is carried out with only one day’s data in this method. Thus, the time elapses since the decrease in output is shorter than with the other methods. In order to mitigate the error in satellite data and improve the accuracy of fault detection, data extraction is carried out, which consists of two steps. In the first step, effective data are extracted by setting a lower irradiance limit. In the second step, “Calculation day” is determined depending on the number of effective data in one day. Fault detection, which is only conducted on the Calculation day, is conducted by comparing the expected power and the measured power. The parameters used in this study were optimized by testing 45 systems that appear normal. Subsequently, 340 systems were analyzed with the proposed method, using optimized parameters. The results showed the effectiveness of our method from the viewpoints of both accuracy and time required. In addition, three data extraction methods were considered to distinguish between the permanent decrease caused by failure, and the temporary decrease caused by partial shade. Fuzzy cluster analysis showed the best result among the three methods used.展开更多
ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the ...ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the performances of these methods in detecting oceanic features for both noise free and noise contaminated AVHRR (Advanced Very High Resolution Radiometer) IR image with Kuroshio. Also, practical experiments in detecting the eddy of Kuroshio with these methods are carried out for comparison. Results show that the ICSED algorithm has more advantages than other methods in detecting mesoscale features of ocean. Finally, the effectiveness of window size of ICSED method to oceanic features detection is quantitatively discussed.展开更多
Based on the high energy γ-ray yield from the H-bomb D-T fusion reaction, it brings forward the idea applying the 16.76 MeV γ-ray to judge whether the H-bomb happens or not, and to deduce the explosion TNT equivalen...Based on the high energy γ-ray yield from the H-bomb D-T fusion reaction, it brings forward the idea applying the 16.76 MeV γ-ray to judge whether the H-bomb happens or not, and to deduce the explosion TNT equivalent accurately. The Monte Carlo N-Particle was applied to simulate the high energy γ-ray radiation characteristics reaching the geosynchronous orbit satellite, and the CVD diamond detector suit for the requirements was researched. A series of experiments were carried out to testify the capabilities of the diamond detector. It provides a brand-new approach to satellite-based nuclear explosion detection.展开更多
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金supported by the National Natural Science Foundation of China(No.41374167,41421003,41474140)China's National Basic Research and Development Program(No.2012CB825603).
文摘Energetic electron measurements and spacecraft charging are of great significance for theoretical research in space physics and space weather applications.In this paper,the energetic electron detection package(EEDP)deployed on three Chinese navigation satellites in medium Earth orbit(MEO)is reviewed.The instrument was developed by the space science payload team led by Peking University.The EEDP includes a pinhole medium-energy electron spectrometer(MES),a high-energy electron detector(HED)based onΔE-E telescope technology,and a deep dielectric charging monitor(DDCM).The MES measures the energy spectra of 50−600 keV electrons from nine directions with a 180°×30°field of view(FOV).The HED measures the energy spectrum of 0.5−3.0 MeV electrons from one direction with a 30°cone-angle FOV.The ground test and calibration results indicate that these three sensors exhibit excellent performance.Preliminary observations show that the electron spectra measured by the MES and HED are in good agreement with the results from the magnetic electron-ion spectrometer(MagEIS)of the Van Allen Probes spacecraft,with an average relative deviation of 27.3%for the energy spectra.The charging currents and voltages measured by the DDCM during storms are consistent with the highenergy electron observations of the HED,demonstrating the effectiveness of the DDCM.The observations of the EEDP on board the three MEO satellites can provide important support for theoretical research on the radiation belts and the applications related to space weather.
基金supported by the National Natural Science Foundation of China(6110118461174159)
文摘The electromagnetic detection satellite (EDS) is a type of earth observation satellites (EOSs). The Information collected by EDSs plays an important role in some fields, such as industry, science and military. The scheduling of EDSs is a complex combinatorial optimization problem. Current research mainly focuses on the scheduling of imaging satellites and SAR satellites, but little work has been done on the scheduling of EDSs for its specific characteristics. A multi-satellite scheduling model is established, in which the specific constrains of EDSs are considered, then a scheduling algorithm based on the genetic algorithm (GA) is proposed. To deal with the specific constrains of EDSs, a penalty function method is introduced. However, it is hard to determine the appropriate penalty coefficient in the penalty function. Therefore, an adaptive adjustment mechanism of the penalty coefficient is designed to solve the problem, as well as improve the scheduling results. Experimental results are used to demonstrate the correctness and practicability of the proposed scheduling algorithm.
基金This work was supported by the National Natural Science Foundation of China(62071475,61890541,62171447).
文摘The application scope of the forward scatter radar(FSR)based on the Global Navigation Satellite System(GNSS)can be expanded by improving the detection capability.Firstly,the forward-scatter signal model when the target crosses the baseline is constructed.Then,the detection method of the for-ward-scatter signal based on the Rényi entropy of time-fre-quency distribution is proposed and the detection performance with different time-frequency distributions is compared.Simula-tion results show that the method based on the smooth pseudo Wigner-Ville distribution(SPWVD)can achieve the best perfor-mance.Next,combined with the geometry of FSR,the influence on detection performance of the relative distance between the target and the baseline is analyzed.Finally,the proposed method is validated by the anechoic chamber measurements and the results show that the detection ability has a 10 dB improvement compared with the common constant false alarm rate(CFAR)detection.
文摘In the design problem of low earth orbit(LEO) reconnaissance satellite constellation, optimization of coverage performance is the design goal in most current methods. However,in the using process, the user only concerns with the detection capabilities rather than coverage performance. To establish the relationship between these two aspects, the reconnaissance processes of normal stochastic targets are considered and the mathematic models of detection processes are built. The indicators of coverage performance are used to evaluate the detection probability and expectation of detection time delay, which are important factors in reconnaissance constellation estimation viewed from military intelligence discipline. The conclusions confirmed by the final simulation will be useful in LEO reconnaissance constellation design, optimization and evaluation.
基金supported by National High Technology Research and Development Program of China(863 Program,No.2014AA7011005)National Nature Science Foundation of China(No.91438120)
文摘In this paper, we propose a Packet Cache-Forward(PCF) method based on improved Bayesian outlier detection to eliminate out-of-order packets caused by transmission path drastically degradation during handover events in the moving satellite networks, for improving the performance of TCP. The proposed method uses an access node satellite to cache all received packets in a short time when handover occurs and forward them out in order. To calculate the cache time accurately, this paper establishes the Bayesian based mixture model for detecting delay outliers of the entire handover scheme. In view of the outliers' misjudgment, an updated classification threshold and the sliding window has been suggested to correct category collections and model parameters for the purpose of quickly identifying exact compensation delay in the varied network load statuses. Simulation shows that, comparing to average processing delay detection method, the average accuracy rate was scaled up by about 4.0%, and there is about 5.5% cut in error rate in the meantime. It also behaves well even though testing with big dataset. Benefiting from the advantage of the proposed scheme in terms of performance, comparing to conventional independent handover and network controlled synchronizedhandover in simulated LEO satellite networks, the proposed independent handover with PCF eliminates packet out-of-order issue to get better improvement on congestion window. Eventually the average delay decreases more than 70% and TCP performance has improved more than 300%.
基金supported by the National Natural Science Foundation of China (NSFC) (No.30571112).
文摘Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.
基金supported by the Director Foundation of the Institute of Seismology,China Earthquake Administration (IS201126025)The Basis Research Foundation of Key laboratory of Geospace Environment & Geodesy Ministry of Education,China (10-01-09)
文摘On the: basis of wavelet theory, we propose an outlier-detection algorithm for satellite gravity ometry by applying a wavelet-shrinkage-de-noising method to some simulation data with white noise and ers. The result Shows that this novel algorithm has a 97% success rate in outlier identification and that be efficiently used for pre-processing real satellite gravity gradiometry data.
文摘The satellite-based automatic identification system (AIS) receiver has to encounter the frequency offset caused by the Doppler effect and the oscillator instability. This paper proposes a non-coherent sequence detection scheme for the satellite-based AIS signal transmitted over the white Gaussian noise channel. Based on the maximum likelihood estimation and a Viterbi decoder, the proposed scheme is capable of tolerating a frequency offset up to 5% of the symbol rate. The complexity of the proposed scheme is reduced by the state-complexity reduction, which is based on per-survivor processing. Simulation results prove that the proposed non-coherent sequence detection scheme has high robustness to frequency offset compared to the relative scheme when messages collision exists.
基金supported by the National Natural Science Foundation of China(62273195).
文摘In this paper,a method for spoofing detection based on the variation of the signal’s carrier-to-noise ratio(CNR)is proposed.This method leverages the directionality of the antenna to induce varying gain changes in the signals across different incident directions,resulting in distinct CNR variations for each signal.A model is developed to calculate the variation value of the signal CNR based on the antenna gain pattern.This model enables the differentiation of the variation values of the CNR for authentic satellite signals and spoofing signals,thereby facilitating spoofing detection.The proposed method is capable of detecting spoofing signals with power and CNR similar to those of authentic satellite signals.The accuracy of the signal CNR variation value calculation model and the effectiveness of the spoofing detection method are verified through a series of experiments.In addition,the proposed spoofing detection method works not only for a single spoofing source but also for distributed spoofing sources.
文摘The integration of optical images and elevation data is of great importance for 3D-assisted mapping applications. Very high resolution (VHR) satellite images provide ideal geo-data for mapping building information. Since buildings are inherently elevated objects, these images need to be co-registered with their elevation data for reliable building detection results. However, accurate co-registration is extremely difficult for off-nadir VHR images acquired over dense urban areas. Therefore, this research proposes a Disparity-Based Elevation Co-Registration (DECR) method for generating a Line-of-Sight Digital Surface Model (LoS-DSM) to efficiently achieve image-elevation data co-registration with pixel-level accuracy. Relative to the traditional photogrammetric approach, the RMSE value of the derived elevations is found to be less than 2 pixels. The applicability of the DECR method is demonstrated through elevation-based building detection (EBD) in a challenging dense urban area. The quality of the detection result is found to be more than 90%. Additionally, the detected objects were geo-referenced successfully to their correct ground locations to allow direct integration with other maps. In comparison to the original LoS-DSM development algorithm, the DECR algorithm is more efficient by reducing the calculation steps, preserving the co-registration accuracy, and minimizing the need for elevation normalization in dense urban areas.
基金National Natural Science Foundation of China(No.41871382)Open Foundation of the Key Laboratory of Space Active Opto-electronics Technologyand Chinese Academy of Sciences(No.2018-ZDKF-1)。
文摘The influence of the single photon laser altimeter range-gate width on the detection probability and ranging accuracy is discussed and analyzed,according to the LiDAR equation,single photon detection equation and the Monte Carlo method to simulate the experiment.The simulated results show that the probability of detection is not affected by the range gate,while the probability of false alarm is relative to the gate width.When the gate width is 100 ns,the ranging accuracy can accord with the requirements of satellite laser altimeter.But when the range gate width exceeds 400 ns,ranging accuracy will decline sharply.The noise ratio will be more as long as the range gate to get larger,so the refined filtering algorithm during the data processing is important to extract the useful photons effectively.In order to ensure repeated observation of the same point for 25 times,we deduce the quantitative relation between the footprint size,footprint,and frequency repetition according to the parameters of ICESat-2.The related conclusions can provide some references for the design and the development of the domestic single photon laser altimetry satellite.
基金Sponsored by the China Postdoctoral Science Foundation(Grant No.2011M500640)
文摘The minimum mean square error-successive interference cancellation( MMSE-SIC) multiuser detection algorithm has high complexity and long processing latency. A multiuser detection algorithm is proposed for multi-beam satellite systems in order to decrease the complexity and latency. The spot beams are grouped base on the distance between them in the proposed algorithm. Some groups are detected in parallel after a crucial group-wise interference cancellation. Furthermore, the multi-stage structure is introduced to improve the performance. Simulation results show that the proposed algorithm can achieve better performance with less complexity compared with the existing group detection algorithm. Moreover,the proposed algorithm using one stage can reduce the complexity over the fast MMSE-SIC and existing group detection algorithm by 9% and20. 9%. The processing latency is reduced significantly compared with the MMSE-SIC.
基金supported by the National Natural Science Foundation of China(61702385)the Key Projects of National Social Science Foundation of China(11&ZD189)
文摘Cover ratio of cloud is a very important factor which affects the quality of a satellite image, therefore cloud detection from satellite images is a necessary step in assessing the image quality. The study on cloud detection from the visual band of a satellite image is developed. Firstly, we consider the differences between the cloud and ground including high grey level, good continuity of grey level, area of cloud region, and the variance of local fractal dimension (VLFD) of the cloud region. A single cloud region detection method is proposed. Secondly, by introducing a reference satellite image and by comparing the variance in the dimensions corresponding to the reference and the tested images, a method that detects multiple cloud regions and determines whether or not the cloud exists in an image is described. By using several Ikonos images, the performance of the proposed method is demonstrated.
基金National Nature Science Foundation(Nos.41971425,41601505)Special Fund for High Resolution Images Surveying and Mapping Application System(No.42-Y30B04-9001-19/21)。
文摘The laser altimeter loaded on the GaoFen-7(GF-7)satellite is designed to record the full waveform data and footprint image,which can obtain high-precision elevation control points for stereo image.The footprint camera equipped on the GF-7 laser altimetry system can capture the energy distribution at the time of laser emission and the image of the ground object where the laser falls,which can be used to judge whether the laser is affected by the cloud.At the same time,the centroid of laser spot on the footprint image can be extracted to monitor the change of laser pointing stability.In this manuscript,a data quality analysis scheme of laser altimetry based on footprint image is presented.Firstly,the cloud detection of footprint image is realized based on deep learning.The fusion result of the model is about 5%better than that of the traditional cloud detection algorithm,which can quickly and accurately determine whether the laser spot is affected by cloud.Secondly,according to the characteristics of footprint image,a threshold constrained ellipse fitting method for extracting the centroid of laser spot is proposed to monitor the pointing stability of long-period lasers.Based on the above method,the change of laser spot centroid since GF-7 satellite was put into operation is analyzed,and the conclusions obtained have certain reference significance for the quality control of satellite laser altimetry data and the analysis of pointing angle stability.
基金Sponsored by the Postdoctoral Science Foundation of China(Grant No.2011M500640)
文摘An iterative detection and decoding algorithm with outer code decision feedback is proposed for the dual polarized( DP) land mobile satellite( LMS) MIMO systems using concatenated codes. A feedback structure is added after the outer decoder in the proposed algorithm. The feedback information is exploited to control the detecting list in the MIMO detector and reduce the number of symbols which have to be processed at each iteration. As a result,the computational complexity is reduced. Meanwhile,the successfully decoded outer code words are used to calculate the more reliable initial information for the inner decoder and the system performance can be improved by this step. The simulation results show that the proposed algorithm can reduce the computational complexity compared to the traditional iterative detection and decoding algorithm and achieve better performance.
基金supported by National Key Research and Development Plan of China under Grant 2022YFB3105203National Natural Science Foundation of China(62132009)+2 种基金key fund of National Natural Science Foundation of China(62272266)Tsinghua University-China Mobile Communications Group Co.,Ltd.Joint InstituteZhongguancun Laboratory。
文摘The gradual deployment of Low-Earth Orbit(LEO)mega constellations with inter-satellite links(ISLs)promises ubiquitous,low-latency,and high-throughput satellite network services.However,networked LEO satellites with ISLs are also at risk of routing attacks such as hijacking.Existing defenses against route hijacking in terrestrial networks can hardly work for the LEO satellite network due to its high spatiotemporal dynamics.To deal with it,we propose RPD,a high-risk routing path detection method for LEO mega-constellation networks.RPD detects abnormal high-risk LEO network paths by checking the consistency between the path delay and the geographical distance.This is efficiently achieved by combining in-band measurements and out-of-band statistical processing to detect the anomaly of the clustering feature in the reference delay matrix.RPD avoids the recalculation of the header cryptographic marks when the handover occurs,thus greatly reducing the cost and improving the performance of highrisk path detection.Experiments showed that the proposed RPD mechanism achieves an average detection accuracy of 91.64%under normal network conditions,and maintain about 89%even when congestion occurs in multiple areas of the network and measurement noise is considered.In addition,RPD does not require any cryptographic operation on the intermediate node,only minimal communication cost with excellent scalability and deployability.
文摘In this paper, a method to detect a decrease in the output power of photovoltaic systems is proposed. This method is based on using satellite irradiance data. In addition, fault detection is carried out with only one day’s data in this method. Thus, the time elapses since the decrease in output is shorter than with the other methods. In order to mitigate the error in satellite data and improve the accuracy of fault detection, data extraction is carried out, which consists of two steps. In the first step, effective data are extracted by setting a lower irradiance limit. In the second step, “Calculation day” is determined depending on the number of effective data in one day. Fault detection, which is only conducted on the Calculation day, is conducted by comparing the expected power and the measured power. The parameters used in this study were optimized by testing 45 systems that appear normal. Subsequently, 340 systems were analyzed with the proposed method, using optimized parameters. The results showed the effectiveness of our method from the viewpoints of both accuracy and time required. In addition, three data extraction methods were considered to distinguish between the permanent decrease caused by failure, and the temporary decrease caused by partial shade. Fuzzy cluster analysis showed the best result among the three methods used.
文摘ICSED (Improved Cluster Shade Edge Detection) algorithm and other various methods to accurately and efficiently detect edges on satellite data are presented. Error rate criterion is used to statistically evaluate the performances of these methods in detecting oceanic features for both noise free and noise contaminated AVHRR (Advanced Very High Resolution Radiometer) IR image with Kuroshio. Also, practical experiments in detecting the eddy of Kuroshio with these methods are carried out for comparison. Results show that the ICSED algorithm has more advantages than other methods in detecting mesoscale features of ocean. Finally, the effectiveness of window size of ICSED method to oceanic features detection is quantitatively discussed.
文摘Based on the high energy γ-ray yield from the H-bomb D-T fusion reaction, it brings forward the idea applying the 16.76 MeV γ-ray to judge whether the H-bomb happens or not, and to deduce the explosion TNT equivalent accurately. The Monte Carlo N-Particle was applied to simulate the high energy γ-ray radiation characteristics reaching the geosynchronous orbit satellite, and the CVD diamond detector suit for the requirements was researched. A series of experiments were carried out to testify the capabilities of the diamond detector. It provides a brand-new approach to satellite-based nuclear explosion detection.