The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called M...The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.展开更多
Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby c...Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy.展开更多
Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems,...Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.展开更多
In the present article,the author posits that the perception that animals apparently display a strategy of avoiding detection by means of camouflage—i.e.,by disguising themselves in the natural colours of their envir...In the present article,the author posits that the perception that animals apparently display a strategy of avoiding detection by means of camouflage—i.e.,by disguising themselves in the natural colours of their environment—is not the actual case in nature but,rather,merely anecdotal.Animal coloration is mainly a-biotic(eco-physiological)and not biotic(camouflage).The contention regarding the absence of the phenomenon of camouflage among animals as a common evolutionary response is based on three arguments:(1)that reflecting the natural colours of the environment is linked to ecophysiology;(2)that predator and prey constitute“an evolutionary pair”and,accordingly,they know how to identify one another(in order to survive they employ different strategies,of which camouflage is not one of them);and (3)that the approach of relating animal camouflage to reflecting the colours of the environment is an anthropocentric one.Rather than the accepted biotic-ethological approach(colour camouflage),the present article suggests the recognition of a-biotic and eco-physiological conditions as a distinct research field,whose title“Reflection of environmental colours by animals”,along with this article,calls for eco-physiologists to demonstrate that this approach indeed offers a special contribution to the understanding of colouration in animals.展开更多
The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some w...The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some works can fool detectors by crafting the adversarial camouflage attached to the object,leading to wrong prediction.It is hard for military operations to utilize the existing adversarial camouflage due to its conspicuous appearance.Motivated by this,this paper proposes the Dual Attribute Adversarial Camouflage(DAAC)for evading the detection by both detectors and humans.Generating DAAC includes two steps:(1)Extracting features from a specific type of scene to generate individual soldier digital camouflage;(2)Attaching the adversarial patch with scene features constraint to the individual soldier digital camouflage to generate the adversarial attribute of DAAC.The visual effects of the individual soldier digital camouflage and the adversarial patch will be improved after integrating with the scene features.Experiment results show that objects camouflaged by DAAC are well integrated with background and achieve visual concealment while remaining effective in fooling object detectors,thus evading the detections by both detectors and humans in the digital domain.This work can serve as the reference for crafting the adversarial camouflage in the physical world.展开更多
To address the problems of missing inside and incomplete edge contours in camouflaged target detection results,we propose a camouflaged moving target detection algorithm based on local minimum difference constraints(L...To address the problems of missing inside and incomplete edge contours in camouflaged target detection results,we propose a camouflaged moving target detection algorithm based on local minimum difference constraints(LMDC).The algorithm first uses the mean to optimize the initial background model,removes the stable background region by global comparison,and extracts the edge point set in the potential target region so that each boundary point(seed)grows along the center of the target.Finally,we define the minor difference constraints term,combine the seed path and the target space consistency,and calculate the attributes of each pixel in the potential target area to realize camouflaged moving target detection.The algorithm of this paper is verified based on a public data sofa video and test videos and compared with the five classic algorithms.The experimental results show that the proposed algorithm yields good results based on integrity,accuracy,and a number of objective evaluation indexes,and its overall performance is better than that of the compared algorithms.展开更多
In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this...In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this research.The combination of spots and textures improved the fusion of the spot pattern and the background.An adversarial autoencoder convolutional network was designed to extract background texture features.The image adversarial loss was added and the reconstruction loss was improved to improve the clarity of the generated texture pattern and the generalization ability of the model.The digital camouflage was formed by obtaining the mean value of the square area and replacing the main color.At the same time,the spots in the square area with a side length of 2 s were subjected to simple linear iterative clustering to form irregular small-spot camouflage.A dataset with a scale of 1050 was established in the experiment.The training results of three different loss functions were investigated.The results showed that the proposed loss function could enhance the generalization of the model and improve the quality of the generated texture image.A variety of digital camouflages with main colors and irregular small-spot camouflage were generated,and their efficiency was tested.On the one hand,intuitive evaluation was given by personnel observing the camouflage pattern embedded in the background and its contour map calculated by the canny operator.On the other hand,objective comparison result was formed by calculating the 4 evaluation indexes between the camouflage pattern and the background.Both results showed that the generated pattern had a high degree of fusion with the background.This model could balance the relationship between the spot size,the number of main colors and the actual effect according to actual needs.展开更多
The fluorine-containing organic polymer was synthesized from 3, 3', 4, 4'-Bisphenyltetracarboxylic (BPDA), and 2,2-Bis (3-amino-4-hydroxyyphenyl) hexafluoropropane (6FHP). It is a first-step preparation of a p...The fluorine-containing organic polymer was synthesized from 3, 3', 4, 4'-Bisphenyltetracarboxylic (BPDA), and 2,2-Bis (3-amino-4-hydroxyyphenyl) hexafluoropropane (6FHP). It is a first-step preparation of a preimided hydroxy-containing polyimide, followed by the covalent bonding of an active chromophore, dispersed red 19 (DR19), onto the backbone of the polyimide via the Mitsunobu reaction. The nonlinear optical (NLO) containing polyimide was synthesized. The differential scanning calorimeter (DSC)and thermal gravimetric analysis (TGA) exhibited Tg and the temperature Tg at which 5 % mass losses occurring of polymer were 248 and 309 ℃, respectively. A reflective electro-optic (EO) modulator using this polymer was fabricated. The optical nonlinearities were determined to be d33 = 5. 209×10^-9 esu (poling voltage of 3.6 kV, 205 ℃) and d33 =7. 418×10^-9esu (poling voltage of 3. 8 kV, 210 ℃) by the second harmonic generation method in in-situ condition at a fundamental wavelength of 1 064 nm. The EO coefficients 733 of the polymer layer in the EO modulator were determined to be 2. 182 pm/V (poling voltage of 3.6 kV, 205 ℃) and 3. 107 pm/V (poling voltage of 3.8 kV, 210 ℃) at 1064 nm by an attenuated-total-reflection (ATR) method.展开更多
We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded...We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.展开更多
A Mach-Zehnder(MZ) electro-optic(EO) modulator are real iz ed,with three optical layers as polymer materials.The functional layer is the co rona poled crosslinkable polyurethane.The ridge waveguide is fabricated by us...A Mach-Zehnder(MZ) electro-optic(EO) modulator are real iz ed,with three optical layers as polymer materials.The functional layer is the co rona poled crosslinkable polyurethane.The ridge waveguide is fabricated by using the spin-coating,poling,photolithography and oxygen reactive ion etching(RIE) techniques.The mode and the modulation properties of these devices are demonstra ted in a micron control system,while the light source works at the wavelength of 1 31 or 1 55 micron.展开更多
A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the ...A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.展开更多
There are two major camouflage protections in modern military tactics:UV-protection and near infrared camouflage.However,not all natural and composite dyestuffs provide the mentioned properties.In this study,the cotto...There are two major camouflage protections in modern military tactics:UV-protection and near infrared camouflage.However,not all natural and composite dyestuffs provide the mentioned properties.In this study,the cotton fabric was dyed with natural indigo and the natural indigo dyeing process was optimized.Green leaves were chosen as the simulating object,and the camouflage properties of the dyed cotton fabric were evaluated.It was observed that the dyed cotton fabric had good UV-protection and near-infrared camouflage properties.The UV-protection effect was strongly dependent on the absorption characteristics of natural indigo for UV radiation.The near infrared camouflage effect was mainly dependent on the reflection spectrum characteristics of natural indigo in the near infrared waveband.展开更多
The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative ad...The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative adversarial network model,the distribution of deformation camouflage spot pattern can be directly fitted,thus simplifying the process of spot extraction and reproduction.The requirements of background spot extraction are analyzed theoretically.The calculation formula of limiting the range of image spot pixels is given and two kinds of spot data sets,forestland and snowfield,are established.Spot feature is decomposed into shape,size and color features,and a GAN(Generative Adversarial Network)framework is established.The effects of different loss functions on network training results are analyzed in the experiment.In the meantime,when the input dimension of generator network is 128,the balance between sample diversity and quality can be achieved.The effects of sample generation are investigated in two aspects.Subjectively,the probability of the generated spots being distinguished in the background is counted,and the results are all less than 20% and mostly close to zero.Objectively,the features of the spot shape are calculated and the independent sample T-test is applied to verify that the features are from the same distribution,and all the P-Values are much higher than 0.05.Both subjective and objective methods prove that the spots generated by this method are similar to the background spots.The proposed method can directly generate the desired camouflage pattern spots,which provides a new technical method for the deformation camouflage pattern design and camouflage effect evaluation.展开更多
A spatial color-mixing model based on tricolor angular frequencies is proposed in consideration that the design theory falls behind the application of digital camouflage pattern.The model is based on Fourier transform...A spatial color-mixing model based on tricolor angular frequencies is proposed in consideration that the design theory falls behind the application of digital camouflage pattern.The model is based on Fourier transform and Gaussian low-pass filter(LPF).In the model,the tricolor angular frequencies are introduced to the spatial frequency response function of human color vision,and the effects of atmospheric attenuation and air screen brightness on color mixture are considered.The field test shows that the model can simulate the color-mixing process in the aspects of color-mixing order,and shape and position of color-mixing spot.But the color-mixing spot color is not perfect,which can be improved by optimizing the atmospheric parameters and tricolor cut-off angular frequencies.The model provides a tool for the research on digital camouflage pattern.展开更多
Camouflage is one of the most widespread and powerful strategies that animals use to make detection/recognition more difficult. Many orb-web spiders of the genus Cyclosa add prey remains, plant debris, moults, and/or ...Camouflage is one of the most widespread and powerful strategies that animals use to make detection/recognition more difficult. Many orb-web spiders of the genus Cyclosa add prey remains, plant debris, moults, and/or eggsacs to their webs called web decorations. Web decorations resembling spider body colour pattern have been considered to camouflage the spider from predators. While this camouflage is obvious from a human's perspective, it has rarely been investigated from a predator's perspective. In this study, we tested the visibility of web decorations by calculating chromatic and achromatic contrasts of detritus and eggsae decorations built by Cyclosa octotubereulata, against four different backgrounds viewed by both bird (e.g., blue tits) and hymenopteran (e.g. wasps) predators. We showed that both juvenile and adult spiders on webs with detritus or egg-sac deco- rations were undetectable by both hymenopteran and bird predators over short and long distances. Our results thus suggest that decorating webs with detritus or eggsacs by C octotuberculata may camouflage the spiders from both hymenopteran and bird predators in their common habitats [Current Zoology 56 (3): 379-387, 2010].展开更多
A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structtire Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretical...A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structtire Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their po- larization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non- polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems.展开更多
Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopan...Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.展开更多
The evaluation index of camouflage patterns is important in the field of military application.It is the goal that researchers have always pursued to make the computable evaluation indicators more in line with the huma...The evaluation index of camouflage patterns is important in the field of military application.It is the goal that researchers have always pursued to make the computable evaluation indicators more in line with the human visual mechanism.In order to make the evaluation method more computationally intelligent,a Multi-Feature Camouflage Fused Index(MF-CFI)is proposed based on the comparison of grayscale,color and texture features between the target and the background.In order to verify the effectiveness of the proposed index,eye movement experiments are conducted to compare the proposed index with existing indexes including Universal Image Quality Index(UIQI),Camouflage Similarity Index(CSI)and Structural Similarity(SSIM).Twenty-four different simulated targets are designed in a grassland background,28 observers participate in the experiment and record the eye movement data during the observation process.The results show that the highest Pearson correlation coefficient is observed between MF-CFI and the eye movement data,both in the designed digital camouflage patterns and largespot camouflage patterns.Since MF-CFI is more in line with the detection law of camouflage targets in human visual perception,the proposed index can be used for the comparison and parameter optimization of camouflage design algorithms.展开更多
Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated ...Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated SPNs with sur-face cloaked by red blood cell membrane(RBCM)are developed for highly e ective photoacoustic imaging and photothermal therapy.The resulting RBCM-coated SPN(SPN@RBCM)displays remarkable near-infrared light absorption and good photosta-bility,as well as high photothermal conver-sion e ciency for photoacoustic imaging and photothermal therapy.Particularly,due to the small size(<5 nm),SPN@RBCM has the advantages of deep tumor penetration and rapid clearance from the body with no appreciable toxicity.The RBCM endows the SPNs with prolonged systematic circulation time,less reticuloendothelial system uptake and reduced immune-recognition,hence improving tumor accumulation after intravenous injection,which provides strong photoacoustic signals and exerts excellent photothermal therapeutic e ects.Thus,this work provides a valuable paradigm for safe and highly e cient tumor pho-toacoustic imaging and photothermal therapy for further clinical translation.展开更多
Introduction: Borderline Class II malocclusion due to deficient mandible can be treated either by orthodontic camouflage, fixed functional appliances or by orthodontics followed by surgical mandibular advancement. Met...Introduction: Borderline Class II malocclusion due to deficient mandible can be treated either by orthodontic camouflage, fixed functional appliances or by orthodontics followed by surgical mandibular advancement. Methodology: A prospective study was designed on young adults with Class II malocclusion on account of a deficient mandible. A total of 45 subjects were divided into three groups of 15 individuals each. The patients were treated either by camouflage, fixed functional appliances or by orthognathic surgery. Pre and post treatment cephalograms were used to assess the skeletal, dental and soft tissue changes. Pre and post treatment profile photographs were assessed on a Visual Analogue Scale (VAS) by orthodontists, oral surgeons and laypersons. Results: Each group achieved a reduction in facial convexity, but the results obtained from the surgical group were more pronounced than the camouflage and the fixed functional group. Conclusion: The reduction in convexity in the camouflage group was by retracting the upper anteriors, which increases the nasolabial angle. In the fixed functional appliance a combination of skeletal and dentoalveolar changes can be observed. However the most appropriate reduction in profile convexity can be obtained by combined orthodontic and surgical treatment of malocclusion.展开更多
基金supported by the National Key Research and Development Program of China(No.2016YFB0800601)the Key Program of NSFC-Tongyong Union Foundation(No.U1636209)+1 种基金the National Natural Science Foundation of China(61602358)the Key Research and Development Programs of Shaanxi(No.2019ZDLGY13-04,No.2019ZDLGY13-07)。
文摘The static and predictable characteristics of cyber systems give attackers an asymmetric advantage in gathering useful information and launching attacks.To reverse this asymmetric advantage,a new defense idea,called Moving Target Defense(MTD),has been proposed to provide additional selectable measures to complement traditional defense.However,MTD is unable to defeat the sophisticated attacker with fingerprint tracking ability.To overcome this limitation,we go one step beyond and show that the combination of MTD and Deception-based Cyber Defense(DCD)can achieve higher performance than either of them.In particular,we first introduce and formalize a novel attacker model named Scan and Foothold Attack(SFA)based on cyber kill chain.Afterwards,we develop probabilistic models for SFA defenses to provide a deeper analysis of the theoretical effect under different defense strategies.These models quantify attack success probability and the probability that the attacker will be deceived under various conditions,such as the size of address space,and the number of hosts,attack analysis time.Finally,the experimental results show that the actual defense effect of each strategy almost perfectly follows its probabilistic model.Also,the defense strategy of combining address mutation and fingerprint camouflage can achieve a better defense effect than the single address mutation.
基金sponsored by the National Defense Science and Technology Key Laboratory Fund(Grant No.61422062205)the Equipment Pre-Research Fund(Grant No.JCKYS2022LD9)。
文摘Brain functional networks model the brain's ability to exchange information across different regions,aiding in the understanding of the cognitive process of human visual attention during target searching,thereby contributing to the advancement of camouflage evaluation.In this study,images with various camouflage effects were presented to observers to generate electroencephalography(EEG)signals,which were then used to construct a brain functional network.The topological parameters of the network were subsequently extracted and input into a machine learning model for training.The results indicate that most of the classifiers achieved accuracy rates exceeding 70%.Specifically,the Logistic algorithm achieved an accuracy of 81.67%.Therefore,it is possible to predict target camouflage effectiveness with high accuracy without the need to calculate discovery probability.The proposed method fully considers the aspects of human visual and cognitive processes,overcomes the subjectivity of human interpretation,and achieves stable and reliable accuracy.
基金support by the National Natural Science Foundation of China (Grant No. 62005049)Natural Science Foundation of Fujian Province (Grant Nos. 2020J01451, 2022J05113)Education and Scientific Research Program for Young and Middleaged Teachers in Fujian Province (Grant No. JAT210035)。
文摘Camouflaged people are extremely expert in actively concealing themselves by effectively utilizing cover and the surrounding environment. Despite advancements in optical detection capabilities through imaging systems, including spectral, polarization, and infrared technologies, there is still a lack of effective real-time method for accurately detecting small-size and high-efficient camouflaged people in complex real-world scenes. Here, this study proposes a snapshot multispectral image-based camouflaged detection model, multispectral YOLO(MS-YOLO), which utilizes the SPD-Conv and Sim AM modules to effectively represent targets and suppress background interference by exploiting the spatial-spectral target information. Besides, the study constructs the first real-shot multispectral camouflaged people dataset(MSCPD), which encompasses diverse scenes, target scales, and attitudes. To minimize information redundancy, MS-YOLO selects an optimal subset of 12 bands with strong feature representation and minimal inter-band correlation as input. Through experiments on the MSCPD, MS-YOLO achieves a mean Average Precision of 94.31% and real-time detection at 65 frames per second, which confirms the effectiveness and efficiency of our method in detecting camouflaged people in various typical desert and forest scenes. Our approach offers valuable support to improve the perception capabilities of unmanned aerial vehicles in detecting enemy forces and rescuing personnel in battlefield.
文摘In the present article,the author posits that the perception that animals apparently display a strategy of avoiding detection by means of camouflage—i.e.,by disguising themselves in the natural colours of their environment—is not the actual case in nature but,rather,merely anecdotal.Animal coloration is mainly a-biotic(eco-physiological)and not biotic(camouflage).The contention regarding the absence of the phenomenon of camouflage among animals as a common evolutionary response is based on three arguments:(1)that reflecting the natural colours of the environment is linked to ecophysiology;(2)that predator and prey constitute“an evolutionary pair”and,accordingly,they know how to identify one another(in order to survive they employ different strategies,of which camouflage is not one of them);and (3)that the approach of relating animal camouflage to reflecting the colours of the environment is an anthropocentric one.Rather than the accepted biotic-ethological approach(colour camouflage),the present article suggests the recognition of a-biotic and eco-physiological conditions as a distinct research field,whose title“Reflection of environmental colours by animals”,along with this article,calls for eco-physiologists to demonstrate that this approach indeed offers a special contribution to the understanding of colouration in animals.
基金National Natural Science Foundation of China(grant number 61801512,grant number 62071484)Natural Science Foundation of Jiangsu Province(grant number BK20180080)to provide fund for conducting experiments。
文摘The object detectors can precisely detect the camouflaged object beyond human perception.The investigations reveal that the CNNs-based(Convolution Neural Networks)detectors are vulnerable to adversarial attacks.Some works can fool detectors by crafting the adversarial camouflage attached to the object,leading to wrong prediction.It is hard for military operations to utilize the existing adversarial camouflage due to its conspicuous appearance.Motivated by this,this paper proposes the Dual Attribute Adversarial Camouflage(DAAC)for evading the detection by both detectors and humans.Generating DAAC includes two steps:(1)Extracting features from a specific type of scene to generate individual soldier digital camouflage;(2)Attaching the adversarial patch with scene features constraint to the individual soldier digital camouflage to generate the adversarial attribute of DAAC.The visual effects of the individual soldier digital camouflage and the adversarial patch will be improved after integrating with the scene features.Experiment results show that objects camouflaged by DAAC are well integrated with background and achieve visual concealment while remaining effective in fooling object detectors,thus evading the detections by both detectors and humans in the digital domain.This work can serve as the reference for crafting the adversarial camouflage in the physical world.
文摘To address the problems of missing inside and incomplete edge contours in camouflaged target detection results,we propose a camouflaged moving target detection algorithm based on local minimum difference constraints(LMDC).The algorithm first uses the mean to optimize the initial background model,removes the stable background region by global comparison,and extracts the edge point set in the potential target region so that each boundary point(seed)grows along the center of the target.Finally,we define the minor difference constraints term,combine the seed path and the target space consistency,and calculate the attributes of each pixel in the potential target area to realize camouflaged moving target detection.The algorithm of this paper is verified based on a public data sofa video and test videos and compared with the five classic algorithms.The experimental results show that the proposed algorithm yields good results based on integrity,accuracy,and a number of objective evaluation indexes,and its overall performance is better than that of the compared algorithms.
基金funded by Natural Science Foundation of Jiangsu Province,China,grant number is BK20180579。
文摘In order to solve the problem of poor fusion between the spots of deformation camouflage and the background,a small-spot deformation camouflage design algorithm based on background texture matching is proposed in this research.The combination of spots and textures improved the fusion of the spot pattern and the background.An adversarial autoencoder convolutional network was designed to extract background texture features.The image adversarial loss was added and the reconstruction loss was improved to improve the clarity of the generated texture pattern and the generalization ability of the model.The digital camouflage was formed by obtaining the mean value of the square area and replacing the main color.At the same time,the spots in the square area with a side length of 2 s were subjected to simple linear iterative clustering to form irregular small-spot camouflage.A dataset with a scale of 1050 was established in the experiment.The training results of three different loss functions were investigated.The results showed that the proposed loss function could enhance the generalization of the model and improve the quality of the generated texture image.A variety of digital camouflages with main colors and irregular small-spot camouflage were generated,and their efficiency was tested.On the one hand,intuitive evaluation was given by personnel observing the camouflage pattern embedded in the background and its contour map calculated by the canny operator.On the other hand,objective comparison result was formed by calculating the 4 evaluation indexes between the camouflage pattern and the background.Both results showed that the generated pattern had a high degree of fusion with the background.This model could balance the relationship between the spot size,the number of main colors and the actual effect according to actual needs.
基金Jiangsu Planned Projects for Postdoctoral ResearchFunds(No0602037B)the Natural Science Foundation of Higher Edu-cation Institutions of Jiangsu Province (No05KJB150016)+1 种基金the Nation-al Natural Science Foundation of China (No50377005)the Fund ofJiangsu University (No06JDG015)
文摘The fluorine-containing organic polymer was synthesized from 3, 3', 4, 4'-Bisphenyltetracarboxylic (BPDA), and 2,2-Bis (3-amino-4-hydroxyyphenyl) hexafluoropropane (6FHP). It is a first-step preparation of a preimided hydroxy-containing polyimide, followed by the covalent bonding of an active chromophore, dispersed red 19 (DR19), onto the backbone of the polyimide via the Mitsunobu reaction. The nonlinear optical (NLO) containing polyimide was synthesized. The differential scanning calorimeter (DSC)and thermal gravimetric analysis (TGA) exhibited Tg and the temperature Tg at which 5 % mass losses occurring of polymer were 248 and 309 ℃, respectively. A reflective electro-optic (EO) modulator using this polymer was fabricated. The optical nonlinearities were determined to be d33 = 5. 209×10^-9 esu (poling voltage of 3.6 kV, 205 ℃) and d33 =7. 418×10^-9esu (poling voltage of 3. 8 kV, 210 ℃) by the second harmonic generation method in in-situ condition at a fundamental wavelength of 1 064 nm. The EO coefficients 733 of the polymer layer in the EO modulator were determined to be 2. 182 pm/V (poling voltage of 3.6 kV, 205 ℃) and 3. 107 pm/V (poling voltage of 3.8 kV, 210 ℃) at 1064 nm by an attenuated-total-reflection (ATR) method.
文摘We propose and analyze a novel Si-based electro-optic modulator with an improved metal-oxide-semiconductor (MOS) capacitor configuration integrated into silicon-on-insulator (SOl). Three gate-oxide layers embedded in the silicon waveguide constitute a triple MOS capacitor structure, which boosts the modulation efficiency compared with a single MOS capacitor. The simulation results demonstrate that the Vπ Lπ product is 2. 4V · cm. The rise time and fall time of the proposed device are calculated to be 80 and 40ps from the transient response curve, respectively,indicating a bandwidth of 8GHz. The phase shift efficiency and bandwidth can be enhanced by rib width scaling.
文摘A Mach-Zehnder(MZ) electro-optic(EO) modulator are real iz ed,with three optical layers as polymer materials.The functional layer is the co rona poled crosslinkable polyurethane.The ridge waveguide is fabricated by using the spin-coating,poling,photolithography and oxygen reactive ion etching(RIE) techniques.The mode and the modulation properties of these devices are demonstra ted in a micron control system,while the light source works at the wavelength of 1 31 or 1 55 micron.
文摘A polarization-maintaining (PM) fiber Mach-Zehnder (MZ) interferometer has been established to measure the EO effect of very thin film materials with optical anisotropy. Unlike a common MZ interferometer, all the components are connected via polarization-maintaining fibers. At the same time, a polarized DFB laser with a maximum power output of 10mW is adopted as the light source to induce a large extinction ratio. Here,we take it to determine the electro-optical coefficients of a very thin superlattice structure with GaAs, KTP, and GaN as comparative samples. The measured EO coefficients show good comparability with the others.
基金Program for Changjiang Scholars,Innovative Research Teamin University(No.IRT0654)ZSTU-Esquel Eco-textile Research Center
文摘There are two major camouflage protections in modern military tactics:UV-protection and near infrared camouflage.However,not all natural and composite dyestuffs provide the mentioned properties.In this study,the cotton fabric was dyed with natural indigo and the natural indigo dyeing process was optimized.Green leaves were chosen as the simulating object,and the camouflage properties of the dyed cotton fabric were evaluated.It was observed that the dyed cotton fabric had good UV-protection and near-infrared camouflage properties.The UV-protection effect was strongly dependent on the absorption characteristics of natural indigo for UV radiation.The near infrared camouflage effect was mainly dependent on the reflection spectrum characteristics of natural indigo in the near infrared waveband.
基金This research was funded by Natural Science Foundation of Jiangsu Province,grant number BK20180579.
文摘The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative adversarial network model,the distribution of deformation camouflage spot pattern can be directly fitted,thus simplifying the process of spot extraction and reproduction.The requirements of background spot extraction are analyzed theoretically.The calculation formula of limiting the range of image spot pixels is given and two kinds of spot data sets,forestland and snowfield,are established.Spot feature is decomposed into shape,size and color features,and a GAN(Generative Adversarial Network)framework is established.The effects of different loss functions on network training results are analyzed in the experiment.In the meantime,when the input dimension of generator network is 128,the balance between sample diversity and quality can be achieved.The effects of sample generation are investigated in two aspects.Subjectively,the probability of the generated spots being distinguished in the background is counted,and the results are all less than 20% and mostly close to zero.Objectively,the features of the spot shape are calculated and the independent sample T-test is applied to verify that the features are from the same distribution,and all the P-Values are much higher than 0.05.Both subjective and objective methods prove that the spots generated by this method are similar to the background spots.The proposed method can directly generate the desired camouflage pattern spots,which provides a new technical method for the deformation camouflage pattern design and camouflage effect evaluation.
文摘A spatial color-mixing model based on tricolor angular frequencies is proposed in consideration that the design theory falls behind the application of digital camouflage pattern.The model is based on Fourier transform and Gaussian low-pass filter(LPF).In the model,the tricolor angular frequencies are introduced to the spatial frequency response function of human color vision,and the effects of atmospheric attenuation and air screen brightness on color mixture are considered.The field test shows that the model can simulate the color-mixing process in the aspects of color-mixing order,and shape and position of color-mixing spot.But the color-mixing spot color is not perfect,which can be improved by optimizing the atmospheric parameters and tricolor cut-off angular frequencies.The model provides a tool for the research on digital camouflage pattern.
基金supported by a grant from NSFC (30770332)The Ministry of Education (MOE) Academic Research Fund (AcRF)(R-154-000-335-112)
文摘Camouflage is one of the most widespread and powerful strategies that animals use to make detection/recognition more difficult. Many orb-web spiders of the genus Cyclosa add prey remains, plant debris, moults, and/or eggsacs to their webs called web decorations. Web decorations resembling spider body colour pattern have been considered to camouflage the spider from predators. While this camouflage is obvious from a human's perspective, it has rarely been investigated from a predator's perspective. In this study, we tested the visibility of web decorations by calculating chromatic and achromatic contrasts of detritus and eggsae decorations built by Cyclosa octotubereulata, against four different backgrounds viewed by both bird (e.g., blue tits) and hymenopteran (e.g. wasps) predators. We showed that both juvenile and adult spiders on webs with detritus or egg-sac deco- rations were undetectable by both hymenopteran and bird predators over short and long distances. Our results thus suggest that decorating webs with detritus or eggsacs by C octotuberculata may camouflage the spiders from both hymenopteran and bird predators in their common habitats [Current Zoology 56 (3): 379-387, 2010].
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61137004,61405218,and 61535014)
文摘A novel high-power polarization-independent electro-optic switch technology based on a reciprocal structtire Sagnac interferometer and a transparent quadratic electro-optic ceramic is proposed and analyzed theoretically and experimentally. The electro-optic ceramic is used as a phase retarder for the clockwise and counter-clockwise polarized light, and their po- larization directions are adjusted to their orthogonal positions by using two half-wave plates. The output light then becomes polarization-independent with respect to the polarization direction of the input light. The switch characteristics, including splitter ratios and polarization states, are theoretically analyzed and simulated in detail by the matrix multiplication method. An experimental setup is built to verify the analysis and experimental results. A new component ceramic is used and a non- polarizing cube beam splitter (NPBS) replaces the beam splitter (BS) to lower the ON/OFF voltage to 305 V and improve the extinction ratio by 2 dB. Finally, the laser-induced damage threshold for the proposed switch is measured and discussed. It is believed that potential applications of this novel polarization-independent electro-optic switch technology will be wide, especially for ultrafast high-power laser systems.
基金Project partially supported by the National Natural Science Foundation of China (Grant Nos. 60736042, 60578035 and 50703039) and the Science Foundation of Jilin Province of China (Grant Nos. 20050520 and 20050321-2).
文摘Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.
基金Natural Science Foundation of Jiangsu Province&Key Laboratory Foundation,grant number is BK20180579&6142206180204 respectively.
文摘The evaluation index of camouflage patterns is important in the field of military application.It is the goal that researchers have always pursued to make the computable evaluation indicators more in line with the human visual mechanism.In order to make the evaluation method more computationally intelligent,a Multi-Feature Camouflage Fused Index(MF-CFI)is proposed based on the comparison of grayscale,color and texture features between the target and the background.In order to verify the effectiveness of the proposed index,eye movement experiments are conducted to compare the proposed index with existing indexes including Universal Image Quality Index(UIQI),Camouflage Similarity Index(CSI)and Structural Similarity(SSIM).Twenty-four different simulated targets are designed in a grassland background,28 observers participate in the experiment and record the eye movement data during the observation process.The results show that the highest Pearson correlation coefficient is observed between MF-CFI and the eye movement data,both in the designed digital camouflage patterns and largespot camouflage patterns.Since MF-CFI is more in line with the detection law of camouflage targets in human visual perception,the proposed index can be used for the comparison and parameter optimization of camouflage design algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.61727823,51873160)the joint research project of Health and Education Commission of Fujian Province(Grant No.2019-WJ-20).
文摘Semiconducting conjugated polymer nanoparticles(SPNs)represent an emerging class of phototheranostic materi-als with great promise for cancer treatment.In this report,low-bandgap electron donoracceptor(DA)-conjugated SPNs with sur-face cloaked by red blood cell membrane(RBCM)are developed for highly e ective photoacoustic imaging and photothermal therapy.The resulting RBCM-coated SPN(SPN@RBCM)displays remarkable near-infrared light absorption and good photosta-bility,as well as high photothermal conver-sion e ciency for photoacoustic imaging and photothermal therapy.Particularly,due to the small size(<5 nm),SPN@RBCM has the advantages of deep tumor penetration and rapid clearance from the body with no appreciable toxicity.The RBCM endows the SPNs with prolonged systematic circulation time,less reticuloendothelial system uptake and reduced immune-recognition,hence improving tumor accumulation after intravenous injection,which provides strong photoacoustic signals and exerts excellent photothermal therapeutic e ects.Thus,this work provides a valuable paradigm for safe and highly e cient tumor pho-toacoustic imaging and photothermal therapy for further clinical translation.
文摘Introduction: Borderline Class II malocclusion due to deficient mandible can be treated either by orthodontic camouflage, fixed functional appliances or by orthodontics followed by surgical mandibular advancement. Methodology: A prospective study was designed on young adults with Class II malocclusion on account of a deficient mandible. A total of 45 subjects were divided into three groups of 15 individuals each. The patients were treated either by camouflage, fixed functional appliances or by orthognathic surgery. Pre and post treatment cephalograms were used to assess the skeletal, dental and soft tissue changes. Pre and post treatment profile photographs were assessed on a Visual Analogue Scale (VAS) by orthodontists, oral surgeons and laypersons. Results: Each group achieved a reduction in facial convexity, but the results obtained from the surgical group were more pronounced than the camouflage and the fixed functional group. Conclusion: The reduction in convexity in the camouflage group was by retracting the upper anteriors, which increases the nasolabial angle. In the fixed functional appliance a combination of skeletal and dentoalveolar changes can be observed. However the most appropriate reduction in profile convexity can be obtained by combined orthodontic and surgical treatment of malocclusion.