Adosomus sp. eats the leaves and oviposits on the stems ofArtemisia ordosica Krasch. Based on an analytical PTI-GC/MS method, 21 volatile organic compounds (VOCs) from the leaves ofA. ordosica were identified. The m...Adosomus sp. eats the leaves and oviposits on the stems ofArtemisia ordosica Krasch. Based on an analytical PTI-GC/MS method, 21 volatile organic compounds (VOCs) from the leaves ofA. ordosica were identified. The major operating equipment consisted of a DB-5 column (30 m × 0.32 mm × 0.25 μm) and a flame ionization detector (FID). The amounts of the components from VOCs were determined by a peak area normalization method and 17 VOC components were identified by PTI-GC/MS. The elec- troantennogram (EAG) responses ofAdosomus sp. to 17 of the VOCs were tested. The results show that seven compounds, i.e., oci- mene, myrcene, R-(+)-α-pinene, caryophyllene, S-(+)-2-canene, humulene and (+)limonene elicited strong EAG responses by female Adosomus sp., with myrcene and ocimene eliciting the strongest responses. It is interesting to note that male Adosomus sp. presented different EAG responses from females to those compounds. Four volatile compounds: β-pinene, myrcene, trans-ocimene and longipinene elicited strong EAG responses to males with myrcene eliciting the strongest response.展开更多
Plant volatiles have been demonstrated to play an important role in regulat- ing the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is current...Plant volatiles have been demonstrated to play an important role in regulat- ing the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is currently known about the function of each volatile and their mixtures. We selected 13 volatiles of the DBM host plant, a cruciferous veg- etable, to study the electroantennogram (EAG) and behavioral responses of C. plutellae. EAG responses to each of the compounds generally increased with concentration. Strong EAG responses were to 100 μL/mL of trans-2-hexenal, benzaldehyde, nonanal and cis-3- hexenol, and 10/zL/mL of trans-2-hexenal and benzaldehyde with the strongest response provoked by trans-2-hexenal at 100μL/mL. In the Y-tube olfactometer, C. plutellae, was significantly attracted by 1μL/mL of trans-2-hexenal and benzaldehyde.β-caryophyllene, cis-3-hexenol or trans-2-hexenal significantly attracted C. plutellae at 10μL/mL, while nonanal, benzyl alcohol, cis-3-hexenol or benzyl cyanide at 100μL/mL significantly at- tracted C. plutellae. Trans-2-hexenal significantly repelled C. plutellae at 100 μL/mL. EAG of C. plutellae showed strong responses to all mixtures made of five various com- pounds with mixtures 3 (trans-2-hexenal, benzaldehyde, nonanal, cis-3-hexenol, benzyl cyanide, farnesene, eucalyptol) and 4 (trans-2-hexenal, benzaldehyde, benzyl alcohol, (R)- (+)-limonene,β-ionone, farnesene, eucalyptol) significantly attracting C. plutellae. These findings demonstrate that the behavior of C. plutellae can be affected either by individual compounds or mixtures of plant volatiles, suggesting a potential of using plant volatiles to improve the efficiency of this parasitoid for biocontrol ofP. xylostella.展开更多
Sitodiplosis mosellana,a periodic but devastating wheat pest,relies on wheat spike volatiles as a cue in sclecing hosts for oviposition.Insect odorant-binding proteins(OBPs)are thought to play essential roles in filte...Sitodiplosis mosellana,a periodic but devastating wheat pest,relies on wheat spike volatiles as a cue in sclecing hosts for oviposition.Insect odorant-binding proteins(OBPs)are thought to play essential roles in filtering,binding and transporting hydropho-bic odorant molecules to specific receptors.To date,the molecular mechanisms underlying S.mosellana olfaction are poorly understood.Here,three S.mosellana antenna-specific OBP genes,SmosOBPII,16 and 21,were cloned and bacterially expressed.Binding properties of the recombinant proteins to 28 volatiles emitted from wheat spikes were in-vestigated using fluorescence competitive binding assays.Sequence analysis suggested that these SmosOBPs belong to the Classic OBP subfamily.Ligand-binding analysis showed that all three SmosOBPs preferentially bound alcohol,ester and ketone com-pounds,and SmosOBP11 and 16 also selectively bound terpenoid compounds.In par-ticular,the three SmosOBPs had high binding affinities(Ki<20μmol/L)to 3-hexanol and cis-3-hexenylacetate that elicited strong electroantennogram(EAG)response fromfemale antennae.In addition,SmosOBP11 displayed significantly higher binding(Ki<8μmo/L)than SmosOBP16 and 21 to l-octen-3-ol,D-panthenol,a-pinene and heptyl acetate which elicited significant EAG response,suggesting that SmosOBP11 plays a ma-jor role in recognition and transportation of these volatiles.These findings have provided important insight into the molecular mechanism by which S.mosellana specifically rec-ognizes plant volatiles for host selection,and have facilitated identification of effective volatile attractants that are potentially useful for pest monitoring and trapping.展开更多
基金supported by the technology pillar program in the "Eleventh Five-year" National Science and Technology Support Program of China (2006BA-D08A10)the program for Changjiang Scholars and Innovative Research Teams in Universities (PC-SIRT0607)
文摘Adosomus sp. eats the leaves and oviposits on the stems ofArtemisia ordosica Krasch. Based on an analytical PTI-GC/MS method, 21 volatile organic compounds (VOCs) from the leaves ofA. ordosica were identified. The major operating equipment consisted of a DB-5 column (30 m × 0.32 mm × 0.25 μm) and a flame ionization detector (FID). The amounts of the components from VOCs were determined by a peak area normalization method and 17 VOC components were identified by PTI-GC/MS. The elec- troantennogram (EAG) responses ofAdosomus sp. to 17 of the VOCs were tested. The results show that seven compounds, i.e., oci- mene, myrcene, R-(+)-α-pinene, caryophyllene, S-(+)-2-canene, humulene and (+)limonene elicited strong EAG responses by female Adosomus sp., with myrcene and ocimene eliciting the strongest responses. It is interesting to note that male Adosomus sp. presented different EAG responses from females to those compounds. Four volatile compounds: β-pinene, myrcene, trans-ocimene and longipinene elicited strong EAG responses to males with myrcene eliciting the strongest response.
基金This work was funded by the project of National Nat- ural Science Foundation of China (No. 31230061), and the National Key Basic Research Program of China (No. 2011CB100404) and the Science Fund for Distinguished Young Scholars in Fujian (No. 2011J06007). GMG is supported by the National Thousand Talents Program in China and the Advanced Talents of SAEFA, and LV by the Minjiang Scholar Program in Fujian Province (China) and the Advanced Talents of SAFEA.
文摘Plant volatiles have been demonstrated to play an important role in regulat- ing the behavior of Cotesia plutellae, a major larval parasitoid of the diamondback moth (DBM), Plutella xylostella, but little is currently known about the function of each volatile and their mixtures. We selected 13 volatiles of the DBM host plant, a cruciferous veg- etable, to study the electroantennogram (EAG) and behavioral responses of C. plutellae. EAG responses to each of the compounds generally increased with concentration. Strong EAG responses were to 100 μL/mL of trans-2-hexenal, benzaldehyde, nonanal and cis-3- hexenol, and 10/zL/mL of trans-2-hexenal and benzaldehyde with the strongest response provoked by trans-2-hexenal at 100μL/mL. In the Y-tube olfactometer, C. plutellae, was significantly attracted by 1μL/mL of trans-2-hexenal and benzaldehyde.β-caryophyllene, cis-3-hexenol or trans-2-hexenal significantly attracted C. plutellae at 10μL/mL, while nonanal, benzyl alcohol, cis-3-hexenol or benzyl cyanide at 100μL/mL significantly at- tracted C. plutellae. Trans-2-hexenal significantly repelled C. plutellae at 100 μL/mL. EAG of C. plutellae showed strong responses to all mixtures made of five various com- pounds with mixtures 3 (trans-2-hexenal, benzaldehyde, nonanal, cis-3-hexenol, benzyl cyanide, farnesene, eucalyptol) and 4 (trans-2-hexenal, benzaldehyde, benzyl alcohol, (R)- (+)-limonene,β-ionone, farnesene, eucalyptol) significantly attracting C. plutellae. These findings demonstrate that the behavior of C. plutellae can be affected either by individual compounds or mixtures of plant volatiles, suggesting a potential of using plant volatiles to improve the efficiency of this parasitoid for biocontrol ofP. xylostella.
基金This research was supported by the National Natural Science Foundation of China(Grant No.31371933)the National Key Research and Development Program of China(Grant No.2018YFD0200402)Science and Technology Planning Project of Yangling Demonstration Zone,China(Grant No.2018NY-07).
文摘Sitodiplosis mosellana,a periodic but devastating wheat pest,relies on wheat spike volatiles as a cue in sclecing hosts for oviposition.Insect odorant-binding proteins(OBPs)are thought to play essential roles in filtering,binding and transporting hydropho-bic odorant molecules to specific receptors.To date,the molecular mechanisms underlying S.mosellana olfaction are poorly understood.Here,three S.mosellana antenna-specific OBP genes,SmosOBPII,16 and 21,were cloned and bacterially expressed.Binding properties of the recombinant proteins to 28 volatiles emitted from wheat spikes were in-vestigated using fluorescence competitive binding assays.Sequence analysis suggested that these SmosOBPs belong to the Classic OBP subfamily.Ligand-binding analysis showed that all three SmosOBPs preferentially bound alcohol,ester and ketone com-pounds,and SmosOBP11 and 16 also selectively bound terpenoid compounds.In par-ticular,the three SmosOBPs had high binding affinities(Ki<20μmol/L)to 3-hexanol and cis-3-hexenylacetate that elicited strong electroantennogram(EAG)response fromfemale antennae.In addition,SmosOBP11 displayed significantly higher binding(Ki<8μmo/L)than SmosOBP16 and 21 to l-octen-3-ol,D-panthenol,a-pinene and heptyl acetate which elicited significant EAG response,suggesting that SmosOBP11 plays a ma-jor role in recognition and transportation of these volatiles.These findings have provided important insight into the molecular mechanism by which S.mosellana specifically rec-ognizes plant volatiles for host selection,and have facilitated identification of effective volatile attractants that are potentially useful for pest monitoring and trapping.