TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear r...TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.展开更多
To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composi...To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.展开更多
Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat...Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat treatment temperatures were analyzed.The microhardness,corrosion resistance,and wear resistance of the Ni-P-SiC_(P) coatings were studied.Results show that Ni-P-SiC_(P) coatings exhibit cauliflower-like morphology.Increasing the SiC_(P) concentration can reduce the size of cellular structure.The microhardness and corrosion resistance are initially increased and then decreased with the increase in SiC_(P) concentration.The maximum microhardness and corrosion potential are 7379 MPa and−0.363 V,respectively,when the SiC_(P) concentration is 5 g/L.The Ni-P-SiC_(P) coatings exhibit an amorphous structure,and the width of the diffuse diffraction peak becomes narrower with the increase in SiC_(P) concentration.It is suggested that SiC_(P) inhibits the deposition of P and promotes the microcrystalline transformation.After heat treatment at 350℃,the Ni-P-SiC_(P) coatings are crystallized,resulting in the precipitation of Ni3P phase.Heat treatment at 400℃ for 1 h maximizes the structure.The synergistic effect of the Ni3P precipitate phase and SiC_(P) dispersion phase promotes the densification of the cellular structure,leading to the optimal microhardness(13828 MPa),optimal corrosion resistance(−0.277 V),and excellent wear resistance.The wear mechanism is dominated by micro-cutting abrasive wear with slight adhesive and oxidative wear.展开更多
Magnesium(Mg)and its alloys have received much attention in a lot of areas due to their special chemical and physical properties.Nevertheless,high corrosion rates are a limiting factor.The plasma electrolytic oxidatio...Magnesium(Mg)and its alloys have received much attention in a lot of areas due to their special chemical and physical properties.Nevertheless,high corrosion rates are a limiting factor.The plasma electrolytic oxidation(PEO)technique is a simple approach to place an oxide film on the surface of light metals like Mg alloys.This method has been considered for controlling the rate of corrosion and improving some other properties.On the other hand,PEO coatings cannot make enough protection of Magnesium alloys for a long time due to porosity and fine cracks.Therefore,PEO-based composite coatings are used to make adequate corrosion protection on the Mg alloys surface.The popularity of these coatings is due to their good corrosion resistance,simplicity,high coating capability,and cost-effectiveness in complex segments.Formation of an organic layer on the surface of PEO coating is one of the effective methods to close the defects and thus prevent the corrosive species penetration into the substrate.Coating the PEO coating with a polymer layer can be a good solution to control the amount of damage and improve the corrosion and abrasion resistance.In addition,PEO coating can eliminate the problems of insufficient adhesion of polymer coatings and is considered as a suitable base for composite coatings.This review paper presents the corrosion and abrasion behavior of the PEO/Polymer dual coating system on Mg alloys.Given the fundamental role of coatings thickness and morphology in wear and corrosion behavior,these aspects have been highly discussed in this study.展开更多
The results of the surface modification of magnesium alloys by plasma electrolytic oxidation(PEO) and subsequent treatment in suspension of the superdispersed polytetrafluoroethylene(SPTFE) or telomeric solution o...The results of the surface modification of magnesium alloys by plasma electrolytic oxidation(PEO) and subsequent treatment in suspension of the superdispersed polytetrafluoroethylene(SPTFE) or telomeric solution of tetrafluoroethylene(TFE) are presented. Composite coatings have been obtained by dipping with subsequent heat treatment. Electrochemical, tribological properties and wettability of protective composite coatings have been investigated. Composite coatings formed on PEO-layer by fourfold treatment of samples in SPTFE suspension possess best protective properties. The obtained coatings decrease the corrosion current density(5.4 × 10^(-11) A cm^(-2)) and wear(7.6 × 10^(-7)mm^3(Nm)^(-1)), and increase the polarisation resistance(1.7 × 10~9 cm^2) and impedance modulus(1.9 × 10~9 cm^2) by orders of magnitude in comparison with unprotected magnesium alloy and base PEO-coating. The highest value of contact angle(CA) has been obtained for coatings with triple application in telomeric solution. CA for such composite coatings attains(171 ± 2)?, as the result of multimodal roughness of the composite coating's surface.展开更多
This paper presents a method of the formation of composite polymer-containing coatings on a Mg–Mn–Ce magnesium alloy by forming a ceramic-like layer using plasma electrolytic oxidation(PEO)and subsequent spraying su...This paper presents a method of the formation of composite polymer-containing coatings on a Mg–Mn–Ce magnesium alloy by forming a ceramic-like layer using plasma electrolytic oxidation(PEO)and subsequent spraying superdispersed polytetrafluoroethylene suspension.The coating composition and their morphological features were studied by SEM,EDS,GDOES,and XRD.The presented data confirm the embedding of fluoropolymer in the PEO coating.The evaluation of the corrosion properties of the formed composite polymer-containing coatings indicates a decrease in the corrosion current density by more than 3 orders of magnitude in comparison with the base PEO coating.The incorporation of a fluoropolymer in a PEO layer by more than 32%increases the load value at which abrasion of the coating to the substrate occurs and reduces the wear of the coating by more than 27 fold in comparison with the PEO layer.It has been established that composite coatings possess hydrophobic properties:the value of the contact angle attains 152°.展开更多
基金Project(KFJJ10-15M) supported by the Open Fund of State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,ChinaProject(E2013208101) supported by the Nature Science Fund of Hebei Province,China+1 种基金Project(Z2012100) supported by Colleges and Universities Science and Technology Research Fund of Hebei Province,ChinaProject supported by the Outstanding Youth Fund of Hebei University of Science and Technology,China
文摘TiN-matrix composite coating was prepared on 45# steel by reactive high-velocity oxy-fuel (HVOF) spraying. Its microstructure, phase composition, micro-hardness, corrosion resistance in 3.5% NaC1 solution and wear resistance were analyzed. The results suggest that the TiN-matrix composite coating is well bonded with the substrate. The micro-hardness measured decreases with the increase of applied test loads. And the micro-hardness of the coating under heavy loads is relatively high. The TiN-matrix composite coating exhibits an excellent corrosion resistance in 3.5% NaC1 solution. The corrosion potential of coating is positive and the passivation zone is broad, which indicates that the TiN-matrix composite coating is stable in the electrolyte and provides excellent protection to the substrate. The wear coefficient of the coating under all loads maintains at 0.49-0.50. The wear mechanism of the coating is revealed to be three-body abrasive wear. Yet the failure forms of TiN-matrix composite coating under different loads have an obvious difference. The failure form of coating under light loads is particle spallation due to the stress concentration while that of coating under heavy loads is crackin~ between inter-lamellae.
基金Funded by the national Natural Science Foundation of China (No. 51075293)the Foundation for Development of Science and Technology of Taiyuan University of Technology,China(No.K201014)
文摘To improve the wear resistance and corrosion resistance of magnesium alloys, a 5 kW continuous wave CO2 laser was used to investigate the laser surface cladding on AZ31 B magnesium alloys with Al-Si/Al2O3-TiO2 composite powders. A detailed microstructure, chemical composition, and phase analysis of the composite coatings were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). The laser cladding shows good metallurgical bonding with the substrate. The composite coatings are composed of Mgl7Al12, Al3Mg2, Mg2Si, Al2O3, and TiO2 phases. Compared to the average microhardness (50HV0.05) of the AZ3 1 B substrate, that of the composite coatings (230HV0.05) is improved significantly. The wear resistances of the surface layers were evaluated in detail. The results demonstrate that the wear resistances of the laser surface-modified samples are considerably improved compared to the substrate. It also show that the composite coatings exhibit better corrosion resistance than that of the substrate in 3.5wt% NaCI solution.
基金Science Research Project of Handan Bureau of Science and Technology(21422075242)。
文摘Ni-P-SiC_(P) coatings were deposited on 42CrMo steel by electroless plating.The surface morphologies and phase structures of the Ni-P-SiC_(P) coatings processed under different SiC_(P) concentrations at different heat treatment temperatures were analyzed.The microhardness,corrosion resistance,and wear resistance of the Ni-P-SiC_(P) coatings were studied.Results show that Ni-P-SiC_(P) coatings exhibit cauliflower-like morphology.Increasing the SiC_(P) concentration can reduce the size of cellular structure.The microhardness and corrosion resistance are initially increased and then decreased with the increase in SiC_(P) concentration.The maximum microhardness and corrosion potential are 7379 MPa and−0.363 V,respectively,when the SiC_(P) concentration is 5 g/L.The Ni-P-SiC_(P) coatings exhibit an amorphous structure,and the width of the diffuse diffraction peak becomes narrower with the increase in SiC_(P) concentration.It is suggested that SiC_(P) inhibits the deposition of P and promotes the microcrystalline transformation.After heat treatment at 350℃,the Ni-P-SiC_(P) coatings are crystallized,resulting in the precipitation of Ni3P phase.Heat treatment at 400℃ for 1 h maximizes the structure.The synergistic effect of the Ni3P precipitate phase and SiC_(P) dispersion phase promotes the densification of the cellular structure,leading to the optimal microhardness(13828 MPa),optimal corrosion resistance(−0.277 V),and excellent wear resistance.The wear mechanism is dominated by micro-cutting abrasive wear with slight adhesive and oxidative wear.
文摘Magnesium(Mg)and its alloys have received much attention in a lot of areas due to their special chemical and physical properties.Nevertheless,high corrosion rates are a limiting factor.The plasma electrolytic oxidation(PEO)technique is a simple approach to place an oxide film on the surface of light metals like Mg alloys.This method has been considered for controlling the rate of corrosion and improving some other properties.On the other hand,PEO coatings cannot make enough protection of Magnesium alloys for a long time due to porosity and fine cracks.Therefore,PEO-based composite coatings are used to make adequate corrosion protection on the Mg alloys surface.The popularity of these coatings is due to their good corrosion resistance,simplicity,high coating capability,and cost-effectiveness in complex segments.Formation of an organic layer on the surface of PEO coating is one of the effective methods to close the defects and thus prevent the corrosive species penetration into the substrate.Coating the PEO coating with a polymer layer can be a good solution to control the amount of damage and improve the corrosion and abrasion resistance.In addition,PEO coating can eliminate the problems of insufficient adhesion of polymer coatings and is considered as a suitable base for composite coatings.This review paper presents the corrosion and abrasion behavior of the PEO/Polymer dual coating system on Mg alloys.Given the fundamental role of coatings thickness and morphology in wear and corrosion behavior,these aspects have been highly discussed in this study.
基金supported by the Russian Science Foundation (No. 14-33-00009)the Government of Russian Federation (Federal Agency of Scientific Organizations), investigations of thermal stability of TFE telomeres and microscopic investigations were supported out by support of Genzo Shimadzu Scholarship
文摘The results of the surface modification of magnesium alloys by plasma electrolytic oxidation(PEO) and subsequent treatment in suspension of the superdispersed polytetrafluoroethylene(SPTFE) or telomeric solution of tetrafluoroethylene(TFE) are presented. Composite coatings have been obtained by dipping with subsequent heat treatment. Electrochemical, tribological properties and wettability of protective composite coatings have been investigated. Composite coatings formed on PEO-layer by fourfold treatment of samples in SPTFE suspension possess best protective properties. The obtained coatings decrease the corrosion current density(5.4 × 10^(-11) A cm^(-2)) and wear(7.6 × 10^(-7)mm^3(Nm)^(-1)), and increase the polarisation resistance(1.7 × 10~9 cm^2) and impedance modulus(1.9 × 10~9 cm^2) by orders of magnitude in comparison with unprotected magnesium alloy and base PEO-coating. The highest value of contact angle(CA) has been obtained for coatings with triple application in telomeric solution. CA for such composite coatings attains(171 ± 2)?, as the result of multimodal roughness of the composite coating's surface.
基金supported by the Russian Science Foundation[Grant No.20-73-00280].
文摘This paper presents a method of the formation of composite polymer-containing coatings on a Mg–Mn–Ce magnesium alloy by forming a ceramic-like layer using plasma electrolytic oxidation(PEO)and subsequent spraying superdispersed polytetrafluoroethylene suspension.The coating composition and their morphological features were studied by SEM,EDS,GDOES,and XRD.The presented data confirm the embedding of fluoropolymer in the PEO coating.The evaluation of the corrosion properties of the formed composite polymer-containing coatings indicates a decrease in the corrosion current density by more than 3 orders of magnitude in comparison with the base PEO coating.The incorporation of a fluoropolymer in a PEO layer by more than 32%increases the load value at which abrasion of the coating to the substrate occurs and reduces the wear of the coating by more than 27 fold in comparison with the PEO layer.It has been established that composite coatings possess hydrophobic properties:the value of the contact angle attains 152°.