期刊文献+
共找到725篇文章
< 1 2 37 >
每页显示 20 50 100
Classification of Electrocardiogram Signals for Arrhythmia Detection Using Convolutional Neural Network
1
作者 Muhammad Aleem Raza Muhammad Anwar +4 位作者 Kashif Nisar Ag.Asri Ag.Ibrahim Usman Ahmed Raza Sadiq Ali Khan Fahad Ahmad 《Computers, Materials & Continua》 SCIE EI 2023年第12期3817-3834,共18页
With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardi... With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardiac arrhythmia is one of the most challenging tasks.The manual analysis of electrocardiogram(ECG)data with the help of the Holter monitor is challenging.Currently,the Convolutional Neural Network(CNN)is receiving considerable attention from researchers for automatically identifying ECG signals.This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute(ANSI)standards and the Association for the Advancement of Medical Instruments(AAMI).The Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia dataset is used for the experiment.The proposed model outperformed the previous model in terms of accuracy and achieved a sensitivity of 99.0%and a positivity predictively 99.2%in the detection of a Ventricular Ectopic Beat(VEB).Moreover,it also gained a sensitivity of 99.0%and positivity predictively of 99.2%for the detection of a supraventricular ectopic beat(SVEB).The overall accuracy of the proposed model is 99.68%. 展开更多
关键词 ARRHYTHMIA ecg signal deep learning convolutional neural network physioNet MIT-BIH arrhythmia database
下载PDF
Improved Bat Algorithm with Deep Learning-Based Biomedical ECG Signal Classification Model
2
作者 Marwa Obayya Nadhem NEMRI +5 位作者 Lubna A.Alharbi Mohamed K.Nour Mrim M.Alnfiai Mohammed Abdullah Al-Hagery Nermin M.Salem Mesfer Al Duhayyim 《Computers, Materials & Continua》 SCIE EI 2023年第2期3151-3166,共16页
With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-base... With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%. 展开更多
关键词 Data science ecg signals improved bat algorithm deep learning biomedical data data classification machine learning
下载PDF
Efficient ECG classification based on Chi-square distance for arrhythmia detection
3
作者 Dhiah Al-Shammary Mustafa Noaman Kadhim +2 位作者 Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期1-15,共15页
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar... This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data. 展开更多
关键词 Arrhythmia classification Chi-square distance electrocardiogram(ecg)signal Particle swarm optimization(PSO)
下载PDF
基于卷积神经网络的ECG心律失常分类研究
4
作者 杨风健 李小琪 李洪亮 《电子设计工程》 2024年第9期165-169,共5页
基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批... 基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批大小三个超参数来优化模型,使用准确率、灵敏性和正预测率三个指标评价模型性能。实验结果表明,模型实现心律失常五分类的整体准确率大于99%,与现有模型性能相比,准确率提升1.2%。 展开更多
关键词 卷积神经网络 心律失常 心电信号 小波变换
下载PDF
以BP神经网络为工具的短时ECG信号情感分类
5
作者 张善斌 《福建电脑》 2024年第2期11-16,共6页
针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生... 针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生理信号,处理后利用神经网络建立模型。实验结果表明,本文方法得到的情感分类的平均识别率为89.14%,且生理信号进行特征提取和识别分类的时间总和小于0.15s,有效地降低了对生理信号种类和窗口长度的依赖。 展开更多
关键词 情感分类 BP神经网络 ecg信号 机器识别
下载PDF
A New Pattern Recognition Method for Detection and Localization of Myocardial Infarction Using T-Wave Integral and Total Integral as Extracted Features from One Cycle of ECG Signal 被引量:5
6
作者 Naser Safdarian Nader Jafarnia Dabanloo Gholamreza Attarodi 《Journal of Biomedical Science and Engineering》 2014年第10期818-824,共7页
In this paper we used two new features i.e. T-wave integral and total integral as extracted feature from one cycle of normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ... In this paper we used two new features i.e. T-wave integral and total integral as extracted feature from one cycle of normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our previous work we used some features of body surface potential map data for this aim. But we know the standard ECG is more popular, so we focused our detection and localization of MI on standard ECG. We use the T-wave integral because this feature is important impression of T-wave in MI. The second feature in this research is total integral of one ECG cycle, because we believe that the MI affects the morphology of the ECG signal which leads to total integral changes. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI, because this method has very good accuracy for classification of normal signal and abnormal signal. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 76% for accuracy in test data for localization and over 94% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve the accuracy of classification by adding more features in this method. A simple method based on using only two features which were extracted from standard ECG is presented and has good accuracy in MI localization. 展开更多
关键词 ecg signal Classification signal Processing Myocardial INFARCTION FEATURES Extraction Neural Network
下载PDF
Compression of ECG Signal Based on Compressive Sensing and the Extraction of Significant Features 被引量:2
7
作者 Mohammed M. Abo-Zahhad Aziza I. Hussein Abdelfatah M. Mohamed 《International Journal of Communications, Network and System Sciences》 2015年第5期97-117,共21页
Diagnoses of heart diseases can be done effectively on long term recordings of ECG signals that preserve the signals’ morphologies. In these cases, the volume of the ECG data produced by the monitoring systems grows ... Diagnoses of heart diseases can be done effectively on long term recordings of ECG signals that preserve the signals’ morphologies. In these cases, the volume of the ECG data produced by the monitoring systems grows significantly. To make the mobile healthcare possible, the need for efficient ECG signal compression algorithms to store and/or transmit the signal efficiently has been rising exponentially. Currently, ECG signal is acquired at Nyquist rate or higher, thus introducing redundancies between adjacent heartbeats due to its quasi-periodic structure. Existing compression methods remove these redundancies by achieving compression and facilitate transmission of the patient’s imperative information. Based on the fact that these signals can be approximated by a linear combination of a few coefficients taken from different basis, an alternative new compression scheme based on Compressive Sensing (CS) has been proposed. CS provides a new approach concerned with signal compression and recovery by exploiting the fact that ECG signal can be reconstructed by acquiring a relatively small number of samples in the “sparse” domains through well-developed optimization procedures. In this paper, a single-lead ECG compression method has been proposed based on improving the signal sparisty through the extraction of the signal significant features. The proposed method starts with a preprocessing stage that detects the peaks and periods of the Q, R and S waves of each beat. Then, the QRS-complex for each signal beat is estimated. The estimated QRS-complexes are subtracted from the original ECG signal and the resulting error signal is compressed using the CS technique. Throughout this process, DWT sparsifying dictionaries have been adopted. The performance of the proposed algorithm, in terms of the reconstructed signal quality and compression ratio, is evaluated by adopting DWT spatial domain basis applied to ECG records extracted from the MIT-BIH Arrhythmia Database. The results indicate that average compression ratio of 11:1 with PRD1 = 1.2% are obtained. Moreover, the quality of the retrieved signal is guaranteed and the compression ratio achieved is an improvement over those obtained by previously reported algorithms. Simulation results suggest that CS should be considered as an acceptable methodology for ECG compression. 展开更多
关键词 Compressed Sensing ecg signal Compression SPARSITY COHERENCE Spatial DOMAIN
下载PDF
Individual Identification Using ECG SignalsW 被引量:1
8
作者 Mohamad O. Diab Alaa Seif +1 位作者 Mohamad El-Abed Maher Sabbah 《Journal of Computer and Communications》 2018年第1期74-80,共7页
The electrocardiogram (ECG) signal used for diagnosis and patient monitoring, has recently emerged as a biometric recognition tool. Indeed, ECG signal changes from one person to another according to health status, hea... The electrocardiogram (ECG) signal used for diagnosis and patient monitoring, has recently emerged as a biometric recognition tool. Indeed, ECG signal changes from one person to another according to health status, heart geometry and anatomy among other factors. This paper forms a comparative study between different identification techniques and their performances. Previous works in this field referred to methodologies implementing either set of fiducial or set non-fiducial features. In this study we show a comparison of the same data using a fiducial feature set and a non-fiducial feature set based on statistical calculation of wavelet coefficient. High identification rates were measured in both cases, non-fiducial using Discrete Meyer (dmey) wavelet outperformed the rest at 98.65. 展开更多
关键词 BIOMETRICS ecg signals Fiducial Features Discrete WAVELET Transform (DWT) Multilayer PERCEPTRON (MLP)
下载PDF
ANALYSIS OF AFFECTIVE ECG SIGNALS TOWARD EMOTION RECOGNITION 被引量:2
9
作者 Xu Ya Liu Guangyuan +2 位作者 Hao Min Wen Wanhui Huang Xiting 《Journal of Electronics(China)》 2010年第1期8-14,共7页
Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognitio... Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognition using ElectroCardioGraphy(ECG) signals from multiple subjects.To collect reliable affective ECG data,we applied an arousal method by movie clips to make subjects experience specific emotions without external interference.Through precise location of P-QRS-T wave by continuous wavelet transform,an amount of ECG features was extracted sufficiently.Since feature selection is a combination optimization problem,Improved Binary Particle Swarm Optimization(IBPSO) based on neighborhood search was applied to search out effective features to improve classification results of emotion states with the help of fisher or K-Nearest Neighbor(KNN) classifier.In the experiment,it is shown that the approach is successful and the effective features got from ECG signals can express emotion states excellently. 展开更多
关键词 Emotion recognition electrocardioCraphy (ecg signal Continuous wavelet transform Improved Binary Particle Swarm Optimization (IBPSO) Neighborhood search
下载PDF
Preliminary Biometrics of ECG Signal Based on Temporal Organization through the Implementation of a Multilayer Perceptron Neural Network 被引量:1
10
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Biomedical Science and Engineering》 2021年第12期435-441,共7页
The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical c... The attributes of the ECG signal signifying the unique electrical properties of the heart offer the opportunity to expand the realm of biometrics, which pertains the identification of an individual based on physical characteristics. The temporal organization of the ECG signal offers a basis for composing a machine learning feature set. The four attributes of the feature set are derived through software automation enabled by Python. These four attributes are the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum and the Q wave minimum and S wave minimum relative to the R wave maximum. The multilayer perceptron neural network was applied and evaluated in terms of classification accuracy and time to develop the model. Superior performance was achieved with respect to a reduced feature set considering only the temporal differential of the P wave maximum and T wave maximum relative to the R wave maximum by comparison to all four attributes applied to the feature set and the temporal differential of the Q wave minimum and S wave minimum relative to the R wave maximum. With these preliminary findings and the advent of portable and wearable devices for the acquisition of the ECG signal, the temporal organization of the ECG signal offers robust potential for the field of biometrics. 展开更多
关键词 ecg signal BIOMETRICS Multilayer Perceptron Neural Network Machine Learning signal Analysis
下载PDF
Progress on Fabric Electrodes Used in ECG Signals Monitoring
11
作者 Zhen Liu Xiaoxia Liu 《Journal of Textile Science and Technology》 2015年第3期110-117,共8页
Wearable monitoring system is designed for skin stimulation of conductive adhesive, prolonged physiological monitoring and biocompatibility, whose core is fabric electrodes and it can feedback physiological status by ... Wearable monitoring system is designed for skin stimulation of conductive adhesive, prolonged physiological monitoring and biocompatibility, whose core is fabric electrodes and it can feedback physiological status by analysis of abnormal electrocardiogram (ECG). Fabric electrode is a sensor to collect biological signals based on textile materials including signals acquisition, processing systems and information feedback platform and so on. In this paper, the design methods and classification of medical electrodes would be introduced. It also sorted out the principle of biological electrical signals, the design methods and characteristics of different material and different structure electrodes from the point of dry electrodes and wet electrodes. There are many methods that can be used to prepare fabric electrodes. They are mainly metal plating, conductive polymer coating, magnetron sputtering, gas phase deposition and impregnation. Besides, they select the appropriate substrate, conductive medium and composite way to get light fabric electrodes which have high conductivity, good conformability. From the perspective of biological signal acquisition by fabric electrodes, this paper also sorted out the influence and approaches of biological signals and the way to feedback the physiological condition of human. As a new generation of bio-signal acquisition material, fabric electrode has met the requirements of the development of modern medicine. Fabric electrode is different from traditional conductive materials in the characteristics of comfort, intelligence, convenience, accuracy and so on. 展开更多
关键词 FABRIC ELECTRODE Biological signals SLIDE ARTIFACTS ecg
下载PDF
Visualization of the Machine Learning Process Using J48 Decision Tree for Biometrics through ECG Signal
12
作者 Robert LeMoyne Timothy Mastroianni 《Journal of Biomedical Science and Engineering》 CAS 2022年第12期287-296,共10页
The inherently unique qualities of the heart infer the candidacy for the domain of biometrics, which applies physiological attributes to establish the recognition of a person’s identity. The heart’s characteristics ... The inherently unique qualities of the heart infer the candidacy for the domain of biometrics, which applies physiological attributes to establish the recognition of a person’s identity. The heart’s characteristics can be ascertained by recording the electrical signal activity of the heart through the acquisition of an electrocardiogram (ECG). With the application of machine learning the subject specific ECG signal can be differentiated. However, the process of distinguishing subjects through machine learning may be considered esoteric, especially for contributing subject matter experts external to the domain of machine learning. A resolution to this dilemma is the application of the J48 decision tree available through the Waikato Environment for Knowledge Analysis (WEKA). The J48 decision tree elucidates the machine learning process through a visualized decision tree that attains classification accuracy through the application of thresholds applied to the numeric attributes of the feature set. Additionally, the numeric attributes of the feature set for the application of the J48 decision tree are derived from the temporal organization of the ECG signal maxima and minima for the respective P, Q, R, S, and T waves. The J48 decision tree achieves considerable classification accuracy for the distinction of subjects based on their ECG signal, for which the machine learning model is briskly composed. 展开更多
关键词 J48 Decision Tree ecg signal BIOMETRICS Machine Learning signal Analysis Machine Learning Trust
下载PDF
Intelligent Biomedical Electrocardiogram Signal Processing for Cardiovascular Disease Diagnosis
13
作者 R.Krishnaswamy B.Sivakumar +3 位作者 B.Viswanathan Fahd N.Al-Wesabi Marwa Obayya Anwer Mustafa Hilal 《Computers, Materials & Continua》 SCIE EI 2022年第4期255-268,共14页
Automatic biomedical signal recognition is an important processfor several disease diagnoses. Particularly, Electrocardiogram (ECG) is commonly used to identify cardiovascular diseases. The professionals can determine... Automatic biomedical signal recognition is an important processfor several disease diagnoses. Particularly, Electrocardiogram (ECG) is commonly used to identify cardiovascular diseases. The professionals can determine the existence of cardiovascular diseases using the morphological patternsof the ECG signals. In order to raise the diagnostic accuracy and reduce thediagnostic time, automated computer aided diagnosis model is necessary. Withthe advancements of artificial intelligence (AI) techniques, large quantity ofbiomedical datasets can be easily examined for decision making. In this aspect,this paper presents an intelligent biomedical ECG signal processing (IBECGSP) technique for CVD diagnosis. The proposed IBECG-SP technique examines the ECG signals for decision making. In addition, gated recurrent unit(GRU) model is used for the feature extraction of the ECG signals. Moreover,earthworm optimization (EWO) algorithm is utilized to optimally tune thehyperparameters of the GRU model. Lastly, softmax classifier is employedto allot appropriate class labels to the applied ECG signals. For examiningthe enhanced outcomes of the proposed IBECG-SP technique, an extensivesimulation analysis take place on the PTB-XL database. The experimentalresults portrayed the supremacy of the IBECG-SP technique over the recentstate of art techniques. 展开更多
关键词 Biomedical signals ecg disease diagnosis artificial intelligence parameter tuning gru model
下载PDF
Compression of ECG Signals Based on DWT and Exploiting the Correlation between ECG Signal Samples
14
作者 Mohammed M. Abo-Zahhad Tarik K. Abdel-Hamid Abdelfatah M. Mohamed 《International Journal of Communications, Network and System Sciences》 2014年第1期53-70,共18页
This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code M... This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code Modulation (DPCM), and run-length coding techniques for the compression of different parts of the signal;where lossless compression is adopted in clinically relevant parts and lossy compression is used in those parts that are not clinically relevant. The proposed compression algorithm begins by segmenting the ECG signal into its main components (P-waves, QRS-complexes, T-waves, U-waves and the isoelectric waves). The resulting waves are grouped into Region of Interest (RoI) and Non Region of Interest (NonRoI) parts. Consequently, lossless and lossy compression schemes are applied to the RoI and NonRoI parts respectively. Ideally we would like to compress the signal losslessly, but in many applications this is not an option. Thus, given a fixed bit budget, it makes sense to spend more bits to represent those parts of the signal that belong to a specific RoI and, thus, reconstruct them with higher fidelity, while allowing other parts to suffer larger distortion. For this purpose, the correlation between the successive samples of the RoI part is utilized by adopting DPCM approach. However the NonRoI part is compressed using DWT, thresholding and coding techniques. The wavelet transformation is used for concentrating the signal energy into a small number of transform coefficients. Compression is then achieved by selecting a subset of the most relevant coefficients which afterwards are efficiently coded. Illustrative examples are given to demonstrate thresholding based on energy packing efficiency strategy, coding of DWT coefficients and data packetizing. The performance of the proposed algorithm is tested in terms of the compression ratio and the PRD distortion metrics for the compression of 10 seconds of data extracted from records 100 and 117 of MIT-BIH database. The obtained results revealed that the proposed technique possesses higher compression ratios and lower PRD compared to the other wavelet transformation techniques. The principal advantages of the proposed approach are: 1) the deployment of different compression schemes to compress different ECG parts to reduce the correlation between consecutive signal samples;and 2) getting high compression ratios with acceptable reconstruction signal quality compared to the recently published results. 展开更多
关键词 ecg signal Segmentation LOSSLESS and LOSSY Compression Techniques Discrete Wavelet Transform Energy PACKING Efficiency RUN-LENGTH Coding
下载PDF
Multimodal Emotion Recognition Based on Facial Expression and ECG Signal
15
作者 NIU Jian-wei AN Yue-qi +1 位作者 NI Jie JIANG Chang-hua 《包装工程》 CAS 北大核心 2022年第4期71-79,共9页
As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,whi... As a key link in human-computer interaction,emotion recognition can enable robots to correctly perceive user emotions and provide dynamic and adjustable services according to the emotional needs of different users,which is the key to improve the cognitive level of robot service.Emotion recognition based on facial expression and electrocardiogram has numerous industrial applications.First,three-dimensional convolutional neural network deep learning architecture is utilized to extract the spatial and temporal features from facial expression video data and electrocardiogram(ECG)data,and emotion classification is carried out.Then two modalities are fused in the data level and the decision level,respectively,and the emotion recognition results are then given.Finally,the emotion recognition results of single-modality and multi-modality are compared and analyzed.Through the comparative analysis of the experimental results of single-modality and multi-modality under the two fusion methods,it is concluded that the accuracy rate of multi-modal emotion recognition is greatly improved compared with that of single-modal emotion recognition,and decision-level fusion is easier to operate and more effective than data-level fusion. 展开更多
关键词 multi-modal emotion recognition facial expression ecg signal three-dimensional convolutional neural network
下载PDF
Electrocardiogram Signal Denoising Using Discrete Wavelet Transform
16
作者 Mustapha El HANINE Elhassane ABDELMOUNIM +1 位作者 Rachid HADDADI Abdelaziz BELAGUID 《Computer Technology and Application》 2014年第2期98-104,共7页
The most common noises in ECG (electrocardiogram) signal processing are BW (baseline wandering) and the 50 or 60 Hz PLI (power line interferences). In order to remove these two major source of noises, we have us... The most common noises in ECG (electrocardiogram) signal processing are BW (baseline wandering) and the 50 or 60 Hz PLI (power line interferences). In order to remove these two major source of noises, we have used the recent powerful DWT (discrete wavelet transform) signal processing in ECG signals which are obtained from MIT-BIH Arrhythmia Database. The results indicate that DWT is a good method for filtering noises without changing the morphology of ECG, and can be applied to all types of ECG signals, whether normal or presenting arrhythmias. 展开更多
关键词 ecg signal processing 60 Hz PLI baseline wander DWT.
下载PDF
Modeling of Biological Tissues Response to Radio Frequency (RF): Towards Remote Sensing of Electrocardiography Signal
17
作者 Fatimah Toameh Hicham Bizri +2 位作者 Walid Hassan Ali Hage-Diab Lina Mustapha 《Journal of Life Sciences》 2013年第12期1305-1311,共7页
Premature newborns are at high risk of developing infections, so they require continuous monitoring of vital parameters for long periods of time, until they approximately reach the pregnancy due date. ECG (electrocar... Premature newborns are at high risk of developing infections, so they require continuous monitoring of vital parameters for long periods of time, until they approximately reach the pregnancy due date. ECG (electrocardiography) is one of the most widely used method for evaluating the structure-function relationship of the heart in health and in sickness. Due to incomplete skin development, premature newborns have some special requirements to the ECG monitoring electrodes. Contact ECG monitoring adversely affects the health and comfort of the newborns. The goal of this study is to determine the feasibility of using RF (radio frequency) in ECG signal remote sensing. This requires studying the interaction mechanisms between RF fields and biological tissues The ECG current propagated from the heart through the skin has an effect on the permittivity of the skin which is frequency dependent. Thus, the feasibility of detecting the change of the relative permittivity in the presence of ECG signal is also discussed. The RF biological tissues response is simulated using MATLAB software in preparation for experimental validation. 展开更多
关键词 Noenatal monitoring radio frequency non-contact ecg measuement physiological signals dielectric properties.
下载PDF
模拟ECG信号在320排CT冠脉成像中的应用价值 被引量:1
18
作者 成满平 蔡晓庆 +4 位作者 牛娟琴 薛巍 陈纲 岳丽娜 杜林芝 《中国CT和MRI杂志》 2023年第11期77-79,共3页
目的探讨模拟ECG信号在320排CT冠脉成像中的应用价值。方法收集和分析我院2015-01-01至2021-10-01期间,使用模拟ECG信号成像的20例患者(A组),与同时期,随机抽取的,常规技术成像的20例患者(B组)的冠脉成像结果,实行对照研究。结果A、B两... 目的探讨模拟ECG信号在320排CT冠脉成像中的应用价值。方法收集和分析我院2015-01-01至2021-10-01期间,使用模拟ECG信号成像的20例患者(A组),与同时期,随机抽取的,常规技术成像的20例患者(B组)的冠脉成像结果,实行对照研究。结果A、B两组图像质量主观法评价,图像质量无显著差异(P=0.3758>0.05);A、B两组图像质量客观法评价,升主动脉根部,右冠状动脉近端,左前降支近端,左旋支近端CT值以及升主动脉根部层面噪声均无明显差异(P>0.05);A、B两组辐射剂量对比有显著差异(P<0.01)。结论模拟ECG信号在320排CT冠脉成像中的应用是可行的,值得推广。 展开更多
关键词 模拟 ecg信号 冠状动脉CT成像 320排CT
下载PDF
多模型投票的深度学习ECG分类方法设计与研究 被引量:1
19
作者 李伟康 邓星 邵海见 《计算机仿真》 北大核心 2023年第8期339-344,共6页
由于经典机器学习算法在心电信号(Recording of electrocardiograms,ECG)分析中存在特征表征能力不足等原因,基于深度学习投票机制,提出了一种基于多模型投票的深度学习ECG波形分类方法。利用多个具有不同网络参数的深度神经网络对ECG... 由于经典机器学习算法在心电信号(Recording of electrocardiograms,ECG)分析中存在特征表征能力不足等原因,基于深度学习投票机制,提出了一种基于多模型投票的深度学习ECG波形分类方法。利用多个具有不同网络参数的深度神经网络对ECG信号进行分类,并通过加权投票来提高ECG信号的分类准确率。实验的平均分类准确率为98%,与传统方法以及其它深度学习方法比如支持向量机,卷积神经网络,深度神经网络以及长短期记忆网络的结果比较,验证了上述方法在分类精度上有显著提高。 展开更多
关键词 多模型 深度学习 投票机制 心电信号
下载PDF
De-Noising of ECG Signals by Design of an Optimized Wavelet
20
作者 Vahid Makhdoomi Kaviri Masoud Sabaghi Saeid Marjani 《Circuits and Systems》 2016年第11期3746-3755,共10页
In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature fil... In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature filter banks and the best of them will be chosen that minimize the Signal-to-Noise Ratio (SNR). Furthermore, the wavelet function and scaling function related to these filters are reported as the best wavelet for de-noising. Simulation results for de-noising of a noisy ECG signal show that using obtained wavelet by proposed method improves the SNR of about 2.5 dB. 展开更多
关键词 WAVELETS DE-NOISING Genetic Algorithm ecg signals
下载PDF
上一页 1 2 37 下一页 到第
使用帮助 返回顶部