期刊文献+
共找到13,237篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of Exogenous Hydrogen Sulfide(H_2S) on the Electrocardiogram(ECG) of Rats Generally Anaesthetized by Zoletil
1
作者 冯国峰 冯秀晶 +3 位作者 张卓 梁新江 赵晓红 范宏刚 《Agricultural Science & Technology》 CAS 2016年第8期1896-1899,共4页
Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in recent years, and plays an important physiological role in the cardivascular system. To explore the effects of different doses of exogenou... Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in recent years, and plays an important physiological role in the cardivascular system. To explore the effects of different doses of exogenous H2S on the electrocardiogram (ECG) of rats generally anesthetized by zoletil, different doses of NariS solution were used for the intervention of intraperitoneal injection 20 rain before the zoletil anesthesia. The ECGs of rats from each treatment group during the time range of 10^th-50^th min were determined under general anesthesia, and then were compared with those from the control group. The results showed that exogenous H2S could significantly reduce the Q-T interval time limit, thus played a role in slowing tachycardia or arrhythmia and other anomalies, thereby protecting the heart. S-T segment and T segment evaluation values were significantly reduced, which might be associated with bradycardia. 展开更多
关键词 Hydrogen sulfide (H2S) electrocardiogram (ecg Zoletil Anethesia Cardiovascular system
下载PDF
基于双阶段特征提取网络的ECG降噪分类算法
2
作者 林楠 唐凯鹏 +1 位作者 牛勇鹏 谢李鹏 《郑州大学学报(工学版)》 CAS 北大核心 2024年第5期61-68,共8页
临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准... 临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准心电信号中提取空间特征;其次,在时间特征提取阶段,由长短期记忆网络与注意力机制结合继续从心电信号中提取时间特征;最后,通过全连接网络层融合提取到的空间特征与时间特征,输出9个类别的概率预测分布。在CPSC2018数据集上与其他同类型先进分类算法进行了对比实验,验证所提算法的效果,实验结果表明:提出的分类算法在对9类ECG信号进行分类时平均F1分数达到0.854,在各项指标上表现更优。此外,实验证明所提算法在含噪数据中的表现也优于其他主流网络,充分证明了所提算法对于含噪心电信号的降噪分类性能,该算法也可应用于其他类似含噪声生理信号的分析和处理。 展开更多
关键词 心电信号分类 心电信号去噪 残差收缩网络 软阈值化 注意力机制
下载PDF
腔内ECG定位技术联合体外测量法在PICC中的应用
3
作者 赵连英 沈叶红 +1 位作者 周娟 王齐芳 《中外医学研究》 2024年第2期93-96,共4页
目的:探讨腔内心电图(ECG)定位技术联合体外测量法在经外周静脉穿刺的中心静脉导管(PICC)中的应用。方法:选取2021年1月—2023年1月阜宁县人民医院收治的100例行上肢PICC置管的患者作为研究对象。根据抛币法将其随机分为观察组和对照组,... 目的:探讨腔内心电图(ECG)定位技术联合体外测量法在经外周静脉穿刺的中心静脉导管(PICC)中的应用。方法:选取2021年1月—2023年1月阜宁县人民医院收治的100例行上肢PICC置管的患者作为研究对象。根据抛币法将其随机分为观察组和对照组,各50例。两组均进行PICC,对照组PICC应用体外测量法,观察组PICC应用腔内ECG定位技术联合体外测量法。比较两组一次性置管情况、导管相关并发症、置管满意度。结果:观察组置管准确率为98.00%,高于对照组的86.00%,置管过深率低于对照组,差异有统计学意义(P<0.05)。两组并发症发生率比较,差异无统计学意义(P>0.05)。观察组总满意度为100%,高于对照组的92.00%,差异有统计学意义(P<0.05)。结论:腔内ECG定位技术联合体外测量法可提高一次置管准确率,提高患者满意率。 展开更多
关键词 腔内心电图定位技术 体外测量法 经外周静脉穿刺的中心静脉导管 尖端最佳位置
下载PDF
基于单通道ECG信号与INFO-ABCLogitBoost模型的睡眠分期
4
作者 朱炳洋 吴建锋 +2 位作者 王柯 王章权 刘半藤 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第12期2547-2555,2585,共10页
为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率... 为了减少对传统多导睡眠图(PSG)系统的依赖,基于单通道心电图(ECG)信号,设计了一种简单高效的睡眠分析算法.采用最大重叠离散小波变换(MODWT)对原始信号进行多分辨分析,再进一步提取峰值信息;根据峰值位置的一阶偏差,提取多维度的心率变异性(HRV)特征.为了进一步筛选与不同睡眠阶段具有强关联性的HRV特征,提出基于ReliefF算法与Gini指数的特征提取方法.在此基础上,采用INFO-ABCLogitBoost方法挖掘HRV与不同睡眠阶段之间的关联性,从而实现睡眠阶段的精细分类.在实际公开数据集上的实验结果表明,所提出的模型在睡眠分期任务中,总体精度为83.67%,准确率为82.59%,Kappa系数为77.94%,F1-Score为82.97%.相比于睡眠分期任务中的常规模型,所提方法展现出更加高效便捷的睡眠质量评估性能,有助于实现家庭或移动医疗场景下的睡眠监测. 展开更多
关键词 睡眠分析 心电图(ecg) 最大重叠离散小波变换(MODWT) 心率变异性(HRV) INFO-ABCLogitBoost
下载PDF
基于深度学习的ECG信号分类与诊断
5
作者 张占 何朗 +3 位作者 张金鹏 王涛 陈为满 娄文璐 《生物医学工程与临床》 CAS 2024年第3期431-437,共7页
心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及... 心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及时更新等未能解决的问题。因此,笔者首先对近10年来基于机器学习的ECG信号分类从波形形态分类、疾病诊断分类和纯粹的机器学习分类研究进行了回顾与综述,总结出了目前的研究遇到的困境,最后对未来面临的问题进行展望。深入学习模型在现实应用中仍存在一些挑战,未来的研究将进一步探索在芯片中实现机器学习模型的便携性和成本效益的硬件解决方案。此外,机器学习算法应寻求最佳的计算开销平衡,并重视在现实世界环境中的应用。在未来研究中,ECG应多进行临床试验,以评估机器学习模型在处理实际生物医学信号时的有效性和可行性,同时构造性价比高的深度学习模型,以帮助医学专家进行精确和及时的预测和诊断。 展开更多
关键词 ecg 机器学习 深度学习 心血管疾病
下载PDF
超声引导下改良送鞘术结合ECG在血液病患者PICC置管中的应用
6
作者 黄丽明 黄英姑 +3 位作者 文丽彬 赵慧函 覃敏莉 周雪梅 《河北医药》 CAS 2024年第15期2336-2338,2342,共4页
目的 探讨超声引导下改良送鞘术结合心电图(ECG)在血液病患者PICC置管中的应用。方法 选取广西医科大学第一附属医院2021年1月至2023年1月收治的110例血液病患者为研究对象,按照随机数字表法分为对照组(右侧55例,采用塞丁格技术送血管... 目的 探讨超声引导下改良送鞘术结合心电图(ECG)在血液病患者PICC置管中的应用。方法 选取广西医科大学第一附属医院2021年1月至2023年1月收治的110例血液病患者为研究对象,按照随机数字表法分为对照组(右侧55例,采用塞丁格技术送血管鞘进行)和观察组(右侧55例,采用超声引导下改良送鞘术结合ECG进行)。置管7 d后观察2组穿刺点情况、置管情况、换药次数、一次性成功率、穿刺点出血量以及并发症情况。结果 观察组穿刺点渗血、异常、机械性静脉炎发生率低于对照组(P<0.05)。观察组患者送鞘完成时间短于对照组,置管即刻疼痛评分低于对照组(P<0.05)。96 h内观察组患者换药次数低于对照组(P<0.05)。观察组一次性成功率高于对照组(P<0.05)。观察组患者穿刺点出血量与对照组比较差异无统计学意义(P>0.05)。治疗后,观察组感染、渗液等并发症发生率与对照组比较差异无统计学意义(P>0.05)。结论 超声引导下改良送鞘术结合ECG的成功率更高,能够改善穿刺点情况,缩短送鞘完成时间,降低疼痛,值得临床推广。 展开更多
关键词 超声引导 改良送鞘术 心电图 血液病
下载PDF
Efficient ECG classification based on Chi-square distance for arrhythmia detection
7
作者 Dhiah Al-Shammary Mustafa Noaman Kadhim +2 位作者 Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期1-15,共15页
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar... This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data. 展开更多
关键词 Arrhythmia classification Chi-square distance electrocardiogram(ecg)signal Particle swarm optimization(PSO)
下载PDF
Review on Development and Application of Fabric Electrodes in Electrocardiogram Monitoring Garments
8
作者 XIE Yutong ZAKARIA Norsaadah 《Journal of Donghua University(English Edition)》 CAS 2024年第5期482-491,共10页
Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identif... Cardiovascular disease persists as the primary cause of human mortality,significantly impacting healthy life expectancy.The routine electrocardiogram(ECG)stands out as a pivotal noninvasive diagnostic tool for identifying arrhythmias.The evolving landscape of fabric electrodes,specifically designed for the prolonged monitoring of human ECG signals,is the focus of this research.Adhering to the preferred reporting items for systematic reviews and meta-analyses(PRISMA)statement and assimilating data from 81 pertinent studies sourced from reputable databases,the research conducts a comprehensive systematic review and meta-analysis on the materials,fabric structures and preparation methods of fabric electrodes in the existing literature.It provides a nuanced assessment of the advantages and disadvantages of diverse textile materials and structures,elucidating their impacts on the stability of biomonitoring signals.Furthermore,the study outlines current developmental constraints and future trajectories for fabric electrodes.These insights could serve as essential guidance for ECG monitoring system designers,aiding them in the selection of materials that optimize the measurement of biopotential signals. 展开更多
关键词 fabric electrode electrocardiogram(ecg)monitoring conductive material fabric structure meta-analysis
下载PDF
Wearable multilead ECG sensing systems using on-skin stretchable and breathable dry adhesives
9
作者 Yingxi Xie Longsheng Lu +1 位作者 Wentao Wang Huan Ma 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第2期167-180,共14页
Electrocardiogram(ECG)monitoring is used to diagnose cardiovascular diseases,for which wearable electronics have attracted much attention due to their lightweight,comfort,and long-term use.This study developed a weara... Electrocardiogram(ECG)monitoring is used to diagnose cardiovascular diseases,for which wearable electronics have attracted much attention due to their lightweight,comfort,and long-term use.This study developed a wearablemultilead ECG sensing system with on-skin stretchable and conductive silver(Ag)-coated fiber/silicone(AgCF-S)dry adhesives.Tangential and normal adhesion to pigskin(0.43 and 0.20 N/cm2,respectively)was optimized by the active control of fiber density and mixing ratio,resulting in close contact in the electrode–skin interface.The breathableAgCF-S dry electrodewas nonallergenic after continuous fit for 24 h and can be reused/cleaned(>100 times)without loss of adhesion.The AgCF encapsulated inside silicone elastomers was overlapped to construct a dynamic network under repeated stretching(10%strain)and bending(90°)deformations,enabling small intrinsic impedance(0.3,0.1 Hz)and contact impedance variation(0.7 k)in high-frequency vibration(70 Hz).All hard/soft modules of the multilead ECG system were integrated into lightweight clothing and equipped with wireless transmission for signal visualization.By synchronous acquisition of I–III,aVR,aVL,aVF,and V4 lead data,the multilead ECG sensing system was suitable for various scenarios,such as exercise,rest,and sleep,with extremely high signal-to-noise ratios. 展开更多
关键词 Multilead electrocardiogram Dry electrodes Wearable electronics Wireless transmission
下载PDF
Automatic Extraction of Medical Latent Variables from ECG Signals Utilizing a Mutual Information-Based Technique and Capsular Neural Networks for Arrhythmia Detection
10
作者 Abbas Ali Hassan Fardin Abdali-Mohammadi 《Computers, Materials & Continua》 SCIE EI 2024年第10期971-983,共13页
From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their difference... From a medical perspective,the 12 leads of the heart in an electrocardiogram(ECG)signal have functional dependencies with each other.Therefore,all these leads report different aspects of an arrhythmia.Their differences lie in the level of highlighting and displaying information about that arrhythmia.For example,although all leads show traces of atrial excitation,this function is more evident in lead II than in any other lead.In this article,a new model was proposed using ECG functional and structural dependencies between heart leads.In the prescreening stage,the ECG signals are segmented from the QRS point so that further analyzes can be performed on these segments in a more detailed manner.The mutual information indices were used to assess the relationship between leads.In order to calculate mutual information,the correlation between the 12 ECG leads has been calculated.The output of this step is a matrix containing all mutual information.Furthermore,to calculate the structural information of ECG signals,a capsule neural network was implemented to aid physicians in the automatic classification of cardiac arrhythmias.The architecture of this capsule neural network has been modified to perform the classification task.In the experimental results section,the proposed model was used to classify arrhythmias in ECG signals from the Chapman dataset.Numerical evaluations showed that this model has a precision of 97.02%,recall of 96.13%,F1-score of 96.57%and accuracy of 97.38%,indicating acceptable performance compared to other state-of-the-art methods.The proposed method shows an average accuracy of 2%superiority over similar works. 展开更多
关键词 Heart diseases electrocardiogram signal signal correlation mutual information capsule neural networks
下载PDF
Attention-Based Residual Dense Shrinkage Network for ECG Denoising
11
作者 Dengyong Zhang Minzhi Yuan +3 位作者 Feng Li Lebing Zhang Yanqiang Sun Yiming Ling 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2809-2824,共16页
Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affec... Electrocardiogram(ECG)signal is one of the noninvasive physiological measurement techniques commonly usedin cardiac diagnosis.However,in real scenarios,the ECGsignal is susceptible to various noise erosion,which affectsthe subsequent pathological analysis.Therefore,the effective removal of the noise from ECG signals has becomea top priority in cardiac diagnostic research.Aiming at the problem of incomplete signal shape retention andlow signal-to-noise ratio(SNR)after denoising,a novel ECG denoising network,named attention-based residualdense shrinkage network(ARDSN),is proposed in this paper.Firstly,the shallow ECG characteristics are extractedby a shallow feature extraction network(SFEN).Then,the residual dense shrinkage attention block(RDSAB)isused for adaptive noise suppression.Finally,feature fusion representation(FFR)is performed on the hierarchicalfeatures extracted by a series of RDSABs to reconstruct the de-noised ECG signal.Experiments on the MIT-BIHarrhythmia database and MIT-BIH noise stress test database indicate that the proposed scheme can effectively resistthe interference of different sources of noise on the ECG signal. 展开更多
关键词 electrocardiogram signal denoising signal-to-noise ratio attention-based residual dense shrinkage network MIT-BIH
下载PDF
The Role of Electrocardiogram DETERMINE Score in Prediction of Coronary Artery Disease Severity
12
作者 Ismail N. El-Sokkary Essam Ahmed Khalil +5 位作者 Mohammed Wael Badawi Ibrahim K. Gamil Shousha Abdalla A. Elsebaey Mohamed Kamal Rehan Mahmoud Ibrahim Elshamy Yasser Ahmed Sadek 《World Journal of Cardiovascular Diseases》 CAS 2024年第9期567-580,共14页
Background: A major cause of mortality and disability on a global scale is myocardial infarction (MI). These days, the most reliable way to detect and measure MI is via cardiovascular magnetic resonance imaging (CMR).... Background: A major cause of mortality and disability on a global scale is myocardial infarction (MI). These days, the most reliable way to detect and measure MI is via cardiovascular magnetic resonance imaging (CMR). Aims and Objectives: To evaluate the effectiveness of the Electrocardiogram DETERMINE Score in predicting the severity of coronary artery disease (CAD) in patients who have experienced an Acute Myocardial Infarction (AMI) & to assess improvements in left ventricular function at 6 months following coronary artery bypass grafting (CABG). Subjects and Methods: This Observational cohort study was done at the Cardiology and Radiology department and cardiac surgery department, Al-Azhar university hospitals and Helwan University hospital. The study involved 700 cases who patients diagnosed with Acute Myocardial Infarction and fulfilled specific criteria for selection. Result: There was highly statistically significant relation between Myocardial infarction size and ECG Marker Score as mean infarct size elevated When the number of ECG markers increased. There was a highly statistically significant relation between myocardial infarct segments, myocardial infarction size and improvement of cardiac function 6 months post-CABG. Conclusion: The study found that larger myocardial infarctions corresponded with higher DETERMINE Scores. It concluded that an ECG-based score better estimates infarct size than LVEF alone. Additionally, there was a significant statistical correlation between the size and segmentation of myocardial infarction and better cardiac function six months after CABG. 展开更多
关键词 electrocardiogram DETERMINE Score Coronary Artery Disease OUTCOME Acute Myocardial Infarction Coronary Artery Bypass Grafting
下载PDF
Emotion Detection Using ECG Signals and a Lightweight CNN Model
13
作者 Amita U.Dessai Hassanali G.Virani 《Computer Systems Science & Engineering》 2024年第5期1193-1211,共19页
Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,an... Emotion recognition is a growing field that has numerous applications in smart healthcare systems and Human-Computer Interaction(HCI).However,physical methods of emotion recognition such as facial expressions,voice,and text data,do not always indicate true emotions,as users can falsify them.Among the physiological methods of emotion detection,Electrocardiogram(ECG)is a reliable and efficient way of detecting emotions.ECG-enabled smart bands have proven effective in collecting emotional data in uncontrolled environments.Researchers use deep machine learning techniques for emotion recognition using ECG signals,but there is a need to develop efficient models by tuning the hyperparameters.Furthermore,most researchers focus on detecting emotions in individual settings,but there is a need to extend this research to group settings aswell since most of the emotions are experienced in groups.In this study,we have developed a novel lightweight one dimensional(1D)Convolutional Neural Network(CNN)model by reducing the number of convolution,max pooling,and classification layers.This optimization has led to more efficient emotion classification using ECG.We tested the proposed model’s performance using ECG data from the AMIGOS(A Dataset for Affect,Personality and Mood Research on Individuals andGroups)dataset for both individual and group settings.The results showed that themodel achieved an accuracy of 82.21%and 85.62%for valence and arousal classification,respectively,in individual settings.In group settings,the accuracy was even higher,at 99.56%and 99.68%for valence and arousal classification,respectively.By reducing the number of layers,the lightweight CNNmodel can process data more quickly and with less complexity in the hardware,making it suitable for the implementation on the mobile phone devices to detect emotions with improved accuracy and speed. 展开更多
关键词 Emotions AMIGOS ecg LIGHTWEIGHT 1D CNN
下载PDF
Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
14
作者 Muhammad Sohail Irshad Tehreem Masood +3 位作者 Arfan Jaffar Muhammad Rashid Sheeraz Akram Abeer Aljohani 《Computers, Materials & Continua》 SCIE EI 2024年第6期4805-4824,共20页
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos... The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes. 展开更多
关键词 Convolution neural network atrial fibrillation area under curve ecg false positive rate deep learning CLASSIFICATION
下载PDF
以BP神经网络为工具的短时ECG信号情感分类
15
作者 张善斌 《福建电脑》 2024年第2期11-16,共6页
针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生... 针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生理信号,处理后利用神经网络建立模型。实验结果表明,本文方法得到的情感分类的平均识别率为89.14%,且生理信号进行特征提取和识别分类的时间总和小于0.15s,有效地降低了对生理信号种类和窗口长度的依赖。 展开更多
关键词 情感分类 BP神经网络 ecg信号 机器识别
下载PDF
基于ECG和PPG特征的情绪识别研究
16
作者 黄欣琪 彭奕文 +4 位作者 黄远周 姚伟为 和盛华 单全莹 项修家 《电脑与电信》 2024年第8期33-39,共7页
心理健康是我们身体健康的重要组成部分,也是我们拥有幸福生活的基础。现代社会的高压力和快节奏生活使人们越来越容易感到焦虑、抑郁和情绪不稳定,通过合理的健康情绪检测方法有益于帮助医护对患者进行情绪监督调理。基于现有的心电图(... 心理健康是我们身体健康的重要组成部分,也是我们拥有幸福生活的基础。现代社会的高压力和快节奏生活使人们越来越容易感到焦虑、抑郁和情绪不稳定,通过合理的健康情绪检测方法有益于帮助医护对患者进行情绪监督调理。基于现有的心电图(ECG)和脉搏波(PPG)两种穿戴式监测情绪的方法,使用WESAD数据集,分别验证了心电信号的心率和心率特异性对中性、压力、愉悦和冥想四种情绪状态的重要性,并基于Sklearn库的分类器,使用交叉验证方法评估和比较它们的性能。实验结果显示,ExtraTrees分类模型在情感状态分类中表现最佳,ECG在分类器中具有更优秀的表现。 展开更多
关键词 心率检测 PPG ecg 心率变异性 情绪识别
下载PDF
基于卷积神经网络的ECG心律失常分类研究
17
作者 杨风健 李小琪 李洪亮 《电子设计工程》 2024年第9期165-169,共5页
基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批... 基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批大小三个超参数来优化模型,使用准确率、灵敏性和正预测率三个指标评价模型性能。实验结果表明,模型实现心律失常五分类的整体准确率大于99%,与现有模型性能相比,准确率提升1.2%。 展开更多
关键词 卷积神经网络 心律失常 心电信号 小波变换
下载PDF
Research on the driver fatigue early warning model of electric vehicles based on the fusion of EMG and ECG signals
18
作者 REN Bin LI Qibing +1 位作者 ZHOU Qinyu LUO Wenfa 《High Technology Letters》 EI CAS 2024年第4期333-343,共11页
Electric vehicles have been rapidly developing worldwide due to the use of new energy.However,at the same time,serious traffic accidents caused by driver fatigue in emergency situations have also drawn widespread atte... Electric vehicles have been rapidly developing worldwide due to the use of new energy.However,at the same time,serious traffic accidents caused by driver fatigue in emergency situations have also drawn widespread attention.The lack of datasets in real vehicle test environments has always been a bottleneck in the research of driver fatigue in electric vehicles.Therefore,this study establishes a dataset from real vehicle test,applies the Bayesian optimization support vector machine(BOA-SVM)algorithm to take features of electromyography(EMG)and electrocardiography(ECG)signals as input and develop an early warning model for driving fatigue detection.Firstly,the driver’s EMG and ECG signals are collected through real vehicle testing experiments and then combined with the driver’s subjective fatigue evaluation scores to establish the dataset.Secondly,the study establishes a driver fatigue early warning model for emergency situations.Time-domain and frequency-domain features are extracted from the EMG signals.Principal component analysis(PCA)is applied for dimensionality reduction of these features.The experimental results show that based on the input of dimensionality reduced EMG features and ECG features,the BOA-SVM algorithm achieved an accuracy of 94.4%in classification. 展开更多
关键词 driver fatigue early warning electromyography(EMG)signal electrocardiography(ecg)signal principal component analysis(PCA) support vector machine(SVM)
下载PDF
全面解读IA ECG广色域测试版ICC文件
19
作者 姚磊磊 赵广 《中国印刷》 2024年第2期56-61,共6页
七色分色技术已发展多年,欧美印刷机构和协会相继投人研发和制定更新相关标准体系,当前色彩校准技术手段等条件正走向成熟,本文对IAECG广色域测试版ICC文件进行全面解读。
关键词 测试版 广色域 ecg 全面解读 色彩校准 分色技术 技术手段
下载PDF
缓慢型心房颤动(Af)伴发长R-R间期在静态心电图(ECG)中发生率及意义
20
作者 毛社娟 《中文科技期刊数据库(引文版)医药卫生》 2024年第4期0115-0118,共4页
探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);... 探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);按照年龄,分为老年组30例(≥80岁)和非老年组24例(<80岁);比较各组伴发长R-R间期发生率。结果 本试验中,甲、乙组伴发长R-R间期发生率差异明显,甲组发生率显著更高(P<0.05)。老年组、非老年组伴发长R-R间期发生率差异明显,老年组发生率显著更高(P<0.05)。结论 缓慢型心房颤动行静态心电图检查,能够准确诊断患者有无伴发长R-R间期;针对老年患者和伴随头晕、黑朦、晕厥等症状患者,应加强其静态心电图检查,以便更好诊断、鉴别其病情,促使患者尽早接受专业治疗和干预,保证其生命安全与预后质量。 展开更多
关键词 静态心电图(ecg) 缓慢型心房颤动 长R-R间期
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部