Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases...Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and re- ception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, pa- tient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.展开更多
Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical...Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.展开更多
ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring an...ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring and alarming system based on Android smart phone. In our system, an ECG device collects the ECG signal and transmits it to an Android phone. The Android phone detects alarms which come from the ECG devices. When alarms occur, Android phone will capture the ECG images and the details about the alarms, and sends them to the cloud Alarm Server (AS). Once received, AS push the messages to doctors’ phone, so the doctors could see the ECG images and alarm details on their mobile phone. In our system, high resolution ECG pictures are transmitted to doctors’ phone in a user-friendly way, which can help doctors keep track of their patient’s condition easily.展开更多
Electrocardiogram(ECG)electrodes are conductive pads applied to the skin to measure cardiac activity.Ag/AgCl electrodes are the commercial product which widely used to obtain ECGs.When monitoring the ECG in a hot spri...Electrocardiogram(ECG)electrodes are conductive pads applied to the skin to measure cardiac activity.Ag/AgCl electrodes are the commercial product which widely used to obtain ECGs.When monitoring the ECG in a hot spring,Ag/AgCl electrodes must be waterproofed;however,this is time-consuming,and the adhesive may tear the skin on removal.For solving the problem,we developed the carbon pencil lead(CPL)electrodes for use in hot springs.Both CPL and Ag/AgCl electrodes were connected to ECG100C’s cables.The Performance was evaluated in three conditions as following:hot spring water with and without bubble,and in cold water.In each environment,the procedure was followed by three different protocols that are recording from the dry condition,hot spring water immersion with and without movement,post hot spring water condition.Under dry and wet conditions,both electrodes can obtain the waveform of the ECG signal in which all PQRST waves were identifiable.Nevertheless,the signal quality of both types of electrodes was different in water immersion with and without movement.The overall morphology obtained by Ag/AgCl electrodes was unstable higher than that of CPL electrodes in immersion without movement condition.The CPL electrodes provided better ECG waveform quality compared to Ag/AgCl electrodes in which the ECG signal had high waveforms distortion in water immersion with movement condition.展开更多
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar...This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.展开更多
This paper describes the development of a new ECG tele-monitoring method and system based on the embedded web server. The system consists of ECG recorders with network interface and the embedded web server, internet n...This paper describes the development of a new ECG tele-monitoring method and system based on the embedded web server. The system consists of ECG recorders with network interface and the embedded web server, internet networks and computers, with the system operating on browser/server(B/S) mode. The ECG recorder was designed by ARM9 (S3C2410X) and embedded operating system (Linux). Once the ECG recorder has been connected to the internet network, medical experts can use the internet to access the server of the ECG recorder, monitor ECG signals, and diagnose patients by browsing the dynamic web pages in the embedded web server. The experimental results reveal that the designed system is stable, reliable, and suitable for the use in real-time ECG tele-monitoring for both family and community health care.展开更多
This paper proposes a batteryless sensing and computational device to collect and process electrocardiography(ECG)signals for monitoring heart rate variability(HRV).The proposed system comprises of a passive UHF radio...This paper proposes a batteryless sensing and computational device to collect and process electrocardiography(ECG)signals for monitoring heart rate variability(HRV).The proposed system comprises of a passive UHF radio frequency identification(RFID)tag,an extreme low power microcontroller,a low-power ECG circuit,and a radio frequency(RF)energy harvester.The microcontroller and ECG circuits consume less power of only~30μA and~3 mA,respectively.Therefore,the proposed RF harvester operating at frequency band of 902 MHz~928 MHz can sufficiently collect available energy from the RFID reader to supply power to the system within a maximum distance of~2 m.To extract R-peak of the ECG signal,a robust algorithm that consumes less time processing is also developed.The information of R-peaks is stored into an Electronic Product Code(EPC)Class 1st Generation 1st compliant ID of the tag and read by the reader.This reader is functioned to collected the R-peak data with sampling rate of 100ms;therefore,the user application can monitor fully range of HRV.The performance of the proposed system shows that this study can provide a good solution in paving the way to new classes of healthcare applications.展开更多
Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in recent years, and plays an important physiological role in the cardivascular system. To explore the effects of different doses of exogenou...Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in recent years, and plays an important physiological role in the cardivascular system. To explore the effects of different doses of exogenous H2S on the electrocardiogram (ECG) of rats generally anesthetized by zoletil, different doses of NariS solution were used for the intervention of intraperitoneal injection 20 rain before the zoletil anesthesia. The ECGs of rats from each treatment group during the time range of 10^th-50^th min were determined under general anesthesia, and then were compared with those from the control group. The results showed that exogenous H2S could significantly reduce the Q-T interval time limit, thus played a role in slowing tachycardia or arrhythmia and other anomalies, thereby protecting the heart. S-T segment and T segment evaluation values were significantly reduced, which might be associated with bradycardia.展开更多
Some heart diseases need long-term monitoring to diagnose. In this paper, we present a wearable single lead ECG monitoring device with low power consumption based on MSP430 and single-lead ECG front-end AD8232, which ...Some heart diseases need long-term monitoring to diagnose. In this paper, we present a wearable single lead ECG monitoring device with low power consumption based on MSP430 and single-lead ECG front-end AD8232, which could acquire and store patient’s ECG data for 7 days continuously. This device is available for long-term wearing with a small volume. Also, it could detect user’s motion status with an acceleration sensor and supports Bluetooth 4.0 protocol. So it could be expanded to be a dynamic heart rate monitor and/or sleep quality monitor combined with smart phone. The device has huge potential of application for health care of human daily life.展开更多
Effective fetal monitoring is an important guarantee for fetal health and early treatment. Fetal movement is one of critical indicators of fetal monitoring, which plays an important role in fetal health. Counting the ...Effective fetal monitoring is an important guarantee for fetal health and early treatment. Fetal movement is one of critical indicators of fetal monitoring, which plays an important role in fetal health. Counting the number of fetal movement by pregnant women is a traditional method for long-term monitoring. However, there are many defects in pregnant women’s feeling count, which cannot meet the accurate requirements of modern perinatal medicine. With the rapid development of biological and electronic technology, various sensors are used to probe the fetal dynamic monitoring, but not on fetal movement. This research proposes a monitoring method for fetal movement via three electrodes. Briefly: first, three electrodes are used to extract electrical signals in the abdomen of pregnant women;second, these signals are amplified and filtered;third, A/D converter with microprocessor is used to make analog digital conversion, which can be stored in the SD card under the control of the microprocessor;finally, the SD card data are processed by computer software and the fetal movement information is analyzed.展开更多
Palpitations are one of the most common reasons for medical consultation. Theytend to worry patients and can affect their quality of life. They are often asymptom associated with cardiac rhythm disorders, although the...Palpitations are one of the most common reasons for medical consultation. Theytend to worry patients and can affect their quality of life. They are often asymptom associated with cardiac rhythm disorders, although there are otheretiologies. For diagnosis, it is essential to be able to reliably correlate the symptomswith an electrocardiographic record allowing the identification or rulingout of a possible rhythm disorder. However, reaching a diagnosis is not alwayssimple, given that they tend to be transitory symptoms and the patient isfrequently asymptomatic at the time of assessment. In recent years, electrocardiographicmonitoring systems have incorporated many technical improvements thatsolve several of the 24-h Holter monitor limitations. The objective of this review isto provide an update on the different monitoring methods currently available,remarking their indications and limitations, to help healthcare professionals toappropriately select and use them in the work-up of patients with palpitations.展开更多
With the increase of aging population, we have been witnessing a decline in the quality of life influenced by numerous social, cultural and economic factors. Several studies have addressed these facts and some emergin...With the increase of aging population, we have been witnessing a decline in the quality of life influenced by numerous social, cultural and economic factors. Several studies have addressed these facts and some emerging technologies are capable of monitoring and anticipating these problems. With the advance in the development of smart textiles, it's possible to use these technologies in the acquisition of biosignals, which allows obtaining a better comfort regarding the use of smart clothes over traditional Ag/AgCI electrodes. In this way, it is possible to monitor for longer periods reducing the discomfort to the user. This paper reports the development of a low cost sensor with the capability of monitoring the electrical activity of the heart, measuring the heart rate and body temperature and is applied in the scenario: health & wellbeing, targeting the continuous measurement of vital signs.展开更多
A critical component of dealing with heart disease is real-time identifi-cation,which triggers rapid action.The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythm...A critical component of dealing with heart disease is real-time identifi-cation,which triggers rapid action.The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythmias.Recent contribu-tions to cardiac arrhythmia prediction using supervised learning approaches gen-erally involve the use of demographic features(electronic health records),signal features(electrocardiogram features as signals),and temporal features.Since the signal of the electrical activity of the heartbeat is very sensitive to differences between high and low heartbeats,it is possible to detect some of the irregularities in the early stages of arrhythmia.This paper describes the training of supervised learning using features obtained from electrocardiogram(ECG)image to correct the limitations of arrhythmia prediction by using demographic and electrocardio-graphic signal features.An experimental study demonstrates the usefulness of the proposed Arrhythmia Prediction by Supervised Learning(APSL)method,whose features are obtained from the image formats of the electrocardiograms used as input.展开更多
文摘Remote ECG monitoring systems are becoming commonplace medical devices for remote heart monitoring. In recent years, remote ECG monitoring systems have been applied in the monitoring of various kinds of heart diseases, and the quality of the transmission and re- ception of the ECG signals during remote process kept advancing. However, there remains accompanying challenges. This report focuses on the three components of the remote ECG monitoring system: patient (the end user), the doctor workstation, and the remote server, reviewing and evaluating the imminent challenges on the wearable systems, packet loss in remote transmission, portable ECG monitoring system, pa- tient ECG data collection system, and ECG signals transmission including real-time processing ST segment, R wave, RR interval and QRS wave, etc. This paper tries to clarify the future developmental strategies of the ECG remote monitoring, which can be helpful in guiding the research and development of remote ECG monitoring.
基金This research was funded by the Key Research and Development Plan of Jiangsu Province under grant BE2017735.Q.S.conceived the study and wrote the manuscript.Q.S.,C.C.,H.G.X.W.collected,analyzed,and interpreted the data.H.G.and X.W.contributed substantially to the development of ECG signal conversion Matlab software and remote automatic detection algorithm.J.L.,M.C.and C.L.revised the manuscript,evaluated and supervised the study.
文摘Arrhythmias are very common in the healthy populations as well as patients with cardiovascular diseases.Among them,atrial fibrillation(AF)and malignant ventricular arrhythmias are usually associated with some clinical events.Early diagnosis of arrhythmias,particularly AF and ventricular arrhythmias,is very important for the treatment and prognosis of patients.Holter is a gold standard commonly recommended for noninvasive detection of paroxysmal arrhythmia.However,it has some shortcomings such as fixed detection timings,delayed report and inability of remote real-time detection.To deal with such problems,we designed and applied a new wearable 72-hour triple-lead H3-electrocardiogram(ECG)device with a remote cloud-based ECG platform and an expertsupporting system.In this study,31 patients were recruited and 24-hour synchronous ECG data by H3-ECG and Holter were recorded.In the H3-ECG group,ECG signals were transmitted using remote real-time modes,and confirmed reports were made by doctors in the remote expert-supporting system,while the traditional modes and detection systems were used in the Holter group.The results showed no significant differences between the two groups in 24-hour total heart rate(HR),averaged HR,maximum HR,minimum HR,premature atrial complexes(PACs)and premature ventricular complexes(PVCs)(P>0.05).The sensitivity and specificity of capture and remote automatic cardiac events detection of PACs,PVCs,and AF by H3-ECG were 93%and 99%,98%and 99%,94%and 98%,respectively.Therefore,the long-term limb triple-lead H3-ECG device can be utilized for domiciliary ECG self-monitoring and remote management of patients with common arrhythmia under medical supervision.
文摘ECG monitoring in daily life is an important means of treating heart disease. To make it easier for the medical to monitor the ECG of their patients outside the hospital, we designed and developed an ECG monitoring and alarming system based on Android smart phone. In our system, an ECG device collects the ECG signal and transmits it to an Android phone. The Android phone detects alarms which come from the ECG devices. When alarms occur, Android phone will capture the ECG images and the details about the alarms, and sends them to the cloud Alarm Server (AS). Once received, AS push the messages to doctors’ phone, so the doctors could see the ECG images and alarm details on their mobile phone. In our system, high resolution ECG pictures are transmitted to doctors’ phone in a user-friendly way, which can help doctors keep track of their patient’s condition easily.
基金Korea Institute for Advancement of Technology(KIAT)grant funded by the Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)and the Soonchunhyang University Research Fund.
文摘Electrocardiogram(ECG)electrodes are conductive pads applied to the skin to measure cardiac activity.Ag/AgCl electrodes are the commercial product which widely used to obtain ECGs.When monitoring the ECG in a hot spring,Ag/AgCl electrodes must be waterproofed;however,this is time-consuming,and the adhesive may tear the skin on removal.For solving the problem,we developed the carbon pencil lead(CPL)electrodes for use in hot springs.Both CPL and Ag/AgCl electrodes were connected to ECG100C’s cables.The Performance was evaluated in three conditions as following:hot spring water with and without bubble,and in cold water.In each environment,the procedure was followed by three different protocols that are recording from the dry condition,hot spring water immersion with and without movement,post hot spring water condition.Under dry and wet conditions,both electrodes can obtain the waveform of the ECG signal in which all PQRST waves were identifiable.Nevertheless,the signal quality of both types of electrodes was different in water immersion with and without movement.The overall morphology obtained by Ag/AgCl electrodes was unstable higher than that of CPL electrodes in immersion without movement condition.The CPL electrodes provided better ECG waveform quality compared to Ag/AgCl electrodes in which the ECG signal had high waveforms distortion in water immersion with movement condition.
文摘This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.
基金Education Committee Foundation of Beijing grant number: KM200610005022+1 种基金Young Backbone Teacher Foundation of Beijing grant number: 102KB00845
文摘This paper describes the development of a new ECG tele-monitoring method and system based on the embedded web server. The system consists of ECG recorders with network interface and the embedded web server, internet networks and computers, with the system operating on browser/server(B/S) mode. The ECG recorder was designed by ARM9 (S3C2410X) and embedded operating system (Linux). Once the ECG recorder has been connected to the internet network, medical experts can use the internet to access the server of the ECG recorder, monitor ECG signals, and diagnose patients by browsing the dynamic web pages in the embedded web server. The experimental results reveal that the designed system is stable, reliable, and suitable for the use in real-time ECG tele-monitoring for both family and community health care.
基金supported by FPT University,Hanoi,Vietnamand Nguyen Tat Thanh University,Ho Chi Minh City,Vietnam.
文摘This paper proposes a batteryless sensing and computational device to collect and process electrocardiography(ECG)signals for monitoring heart rate variability(HRV).The proposed system comprises of a passive UHF radio frequency identification(RFID)tag,an extreme low power microcontroller,a low-power ECG circuit,and a radio frequency(RF)energy harvester.The microcontroller and ECG circuits consume less power of only~30μA and~3 mA,respectively.Therefore,the proposed RF harvester operating at frequency band of 902 MHz~928 MHz can sufficiently collect available energy from the RFID reader to supply power to the system within a maximum distance of~2 m.To extract R-peak of the ECG signal,a robust algorithm that consumes less time processing is also developed.The information of R-peaks is stored into an Electronic Product Code(EPC)Class 1st Generation 1st compliant ID of the tag and read by the reader.This reader is functioned to collected the R-peak data with sampling rate of 100ms;therefore,the user application can monitor fully range of HRV.The performance of the proposed system shows that this study can provide a good solution in paving the way to new classes of healthcare applications.
文摘Hydrogen sulfide (H2S) is the third gaseous signaling molecule discovered in recent years, and plays an important physiological role in the cardivascular system. To explore the effects of different doses of exogenous H2S on the electrocardiogram (ECG) of rats generally anesthetized by zoletil, different doses of NariS solution were used for the intervention of intraperitoneal injection 20 rain before the zoletil anesthesia. The ECGs of rats from each treatment group during the time range of 10^th-50^th min were determined under general anesthesia, and then were compared with those from the control group. The results showed that exogenous H2S could significantly reduce the Q-T interval time limit, thus played a role in slowing tachycardia or arrhythmia and other anomalies, thereby protecting the heart. S-T segment and T segment evaluation values were significantly reduced, which might be associated with bradycardia.
文摘Some heart diseases need long-term monitoring to diagnose. In this paper, we present a wearable single lead ECG monitoring device with low power consumption based on MSP430 and single-lead ECG front-end AD8232, which could acquire and store patient’s ECG data for 7 days continuously. This device is available for long-term wearing with a small volume. Also, it could detect user’s motion status with an acceleration sensor and supports Bluetooth 4.0 protocol. So it could be expanded to be a dynamic heart rate monitor and/or sleep quality monitor combined with smart phone. The device has huge potential of application for health care of human daily life.
文摘Effective fetal monitoring is an important guarantee for fetal health and early treatment. Fetal movement is one of critical indicators of fetal monitoring, which plays an important role in fetal health. Counting the number of fetal movement by pregnant women is a traditional method for long-term monitoring. However, there are many defects in pregnant women’s feeling count, which cannot meet the accurate requirements of modern perinatal medicine. With the rapid development of biological and electronic technology, various sensors are used to probe the fetal dynamic monitoring, but not on fetal movement. This research proposes a monitoring method for fetal movement via three electrodes. Briefly: first, three electrodes are used to extract electrical signals in the abdomen of pregnant women;second, these signals are amplified and filtered;third, A/D converter with microprocessor is used to make analog digital conversion, which can be stored in the SD card under the control of the microprocessor;finally, the SD card data are processed by computer software and the fetal movement information is analyzed.
文摘Palpitations are one of the most common reasons for medical consultation. Theytend to worry patients and can affect their quality of life. They are often asymptom associated with cardiac rhythm disorders, although there are otheretiologies. For diagnosis, it is essential to be able to reliably correlate the symptomswith an electrocardiographic record allowing the identification or rulingout of a possible rhythm disorder. However, reaching a diagnosis is not alwayssimple, given that they tend to be transitory symptoms and the patient isfrequently asymptomatic at the time of assessment. In recent years, electrocardiographicmonitoring systems have incorporated many technical improvements thatsolve several of the 24-h Holter monitor limitations. The objective of this review isto provide an update on the different monitoring methods currently available,remarking their indications and limitations, to help healthcare professionals toappropriately select and use them in the work-up of patients with palpitations.
文摘With the increase of aging population, we have been witnessing a decline in the quality of life influenced by numerous social, cultural and economic factors. Several studies have addressed these facts and some emerging technologies are capable of monitoring and anticipating these problems. With the advance in the development of smart textiles, it's possible to use these technologies in the acquisition of biosignals, which allows obtaining a better comfort regarding the use of smart clothes over traditional Ag/AgCI electrodes. In this way, it is possible to monitor for longer periods reducing the discomfort to the user. This paper reports the development of a low cost sensor with the capability of monitoring the electrical activity of the heart, measuring the heart rate and body temperature and is applied in the scenario: health & wellbeing, targeting the continuous measurement of vital signs.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work under Grant Number(R.G.P1/155/40/2019)。
文摘A critical component of dealing with heart disease is real-time identifi-cation,which triggers rapid action.The main challenge of real-time identification is illustrated here by the rare occurrence of cardiac arrhythmias.Recent contribu-tions to cardiac arrhythmia prediction using supervised learning approaches gen-erally involve the use of demographic features(electronic health records),signal features(electrocardiogram features as signals),and temporal features.Since the signal of the electrical activity of the heartbeat is very sensitive to differences between high and low heartbeats,it is possible to detect some of the irregularities in the early stages of arrhythmia.This paper describes the training of supervised learning using features obtained from electrocardiogram(ECG)image to correct the limitations of arrhythmia prediction by using demographic and electrocardio-graphic signal features.An experimental study demonstrates the usefulness of the proposed Arrhythmia Prediction by Supervised Learning(APSL)method,whose features are obtained from the image formats of the electrocardiograms used as input.