This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar...This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.展开更多
Wearable monitoring system is designed for skin stimulation of conductive adhesive, prolonged physiological monitoring and biocompatibility, whose core is fabric electrodes and it can feedback physiological status by ...Wearable monitoring system is designed for skin stimulation of conductive adhesive, prolonged physiological monitoring and biocompatibility, whose core is fabric electrodes and it can feedback physiological status by analysis of abnormal electrocardiogram (ECG). Fabric electrode is a sensor to collect biological signals based on textile materials including signals acquisition, processing systems and information feedback platform and so on. In this paper, the design methods and classification of medical electrodes would be introduced. It also sorted out the principle of biological electrical signals, the design methods and characteristics of different material and different structure electrodes from the point of dry electrodes and wet electrodes. There are many methods that can be used to prepare fabric electrodes. They are mainly metal plating, conductive polymer coating, magnetron sputtering, gas phase deposition and impregnation. Besides, they select the appropriate substrate, conductive medium and composite way to get light fabric electrodes which have high conductivity, good conformability. From the perspective of biological signal acquisition by fabric electrodes, this paper also sorted out the influence and approaches of biological signals and the way to feedback the physiological condition of human. As a new generation of bio-signal acquisition material, fabric electrode has met the requirements of the development of modern medicine. Fabric electrode is different from traditional conductive materials in the characteristics of comfort, intelligence, convenience, accuracy and so on.展开更多
The electrocardiogram (ECG) signal used for diagnosis and patient monitoring, has recently emerged as a biometric recognition tool. Indeed, ECG signal changes from one person to another according to health status, hea...The electrocardiogram (ECG) signal used for diagnosis and patient monitoring, has recently emerged as a biometric recognition tool. Indeed, ECG signal changes from one person to another according to health status, heart geometry and anatomy among other factors. This paper forms a comparative study between different identification techniques and their performances. Previous works in this field referred to methodologies implementing either set of fiducial or set non-fiducial features. In this study we show a comparison of the same data using a fiducial feature set and a non-fiducial feature set based on statistical calculation of wavelet coefficient. High identification rates were measured in both cases, non-fiducial using Discrete Meyer (dmey) wavelet outperformed the rest at 98.65.展开更多
Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognitio...Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognition using ElectroCardioGraphy(ECG) signals from multiple subjects.To collect reliable affective ECG data,we applied an arousal method by movie clips to make subjects experience specific emotions without external interference.Through precise location of P-QRS-T wave by continuous wavelet transform,an amount of ECG features was extracted sufficiently.Since feature selection is a combination optimization problem,Improved Binary Particle Swarm Optimization(IBPSO) based on neighborhood search was applied to search out effective features to improve classification results of emotion states with the help of fisher or K-Nearest Neighbor(KNN) classifier.In the experiment,it is shown that the approach is successful and the effective features got from ECG signals can express emotion states excellently.展开更多
This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code M...This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code Modulation (DPCM), and run-length coding techniques for the compression of different parts of the signal;where lossless compression is adopted in clinically relevant parts and lossy compression is used in those parts that are not clinically relevant. The proposed compression algorithm begins by segmenting the ECG signal into its main components (P-waves, QRS-complexes, T-waves, U-waves and the isoelectric waves). The resulting waves are grouped into Region of Interest (RoI) and Non Region of Interest (NonRoI) parts. Consequently, lossless and lossy compression schemes are applied to the RoI and NonRoI parts respectively. Ideally we would like to compress the signal losslessly, but in many applications this is not an option. Thus, given a fixed bit budget, it makes sense to spend more bits to represent those parts of the signal that belong to a specific RoI and, thus, reconstruct them with higher fidelity, while allowing other parts to suffer larger distortion. For this purpose, the correlation between the successive samples of the RoI part is utilized by adopting DPCM approach. However the NonRoI part is compressed using DWT, thresholding and coding techniques. The wavelet transformation is used for concentrating the signal energy into a small number of transform coefficients. Compression is then achieved by selecting a subset of the most relevant coefficients which afterwards are efficiently coded. Illustrative examples are given to demonstrate thresholding based on energy packing efficiency strategy, coding of DWT coefficients and data packetizing. The performance of the proposed algorithm is tested in terms of the compression ratio and the PRD distortion metrics for the compression of 10 seconds of data extracted from records 100 and 117 of MIT-BIH database. The obtained results revealed that the proposed technique possesses higher compression ratios and lower PRD compared to the other wavelet transformation techniques. The principal advantages of the proposed approach are: 1) the deployment of different compression schemes to compress different ECG parts to reduce the correlation between consecutive signal samples;and 2) getting high compression ratios with acceptable reconstruction signal quality compared to the recently published results.展开更多
由于经典机器学习算法在心电信号(Recording of electrocardiograms,ECG)分析中存在特征表征能力不足等原因,基于深度学习投票机制,提出了一种基于多模型投票的深度学习ECG波形分类方法。利用多个具有不同网络参数的深度神经网络对ECG...由于经典机器学习算法在心电信号(Recording of electrocardiograms,ECG)分析中存在特征表征能力不足等原因,基于深度学习投票机制,提出了一种基于多模型投票的深度学习ECG波形分类方法。利用多个具有不同网络参数的深度神经网络对ECG信号进行分类,并通过加权投票来提高ECG信号的分类准确率。实验的平均分类准确率为98%,与传统方法以及其它深度学习方法比如支持向量机,卷积神经网络,深度神经网络以及长短期记忆网络的结果比较,验证了上述方法在分类精度上有显著提高。展开更多
In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature fil...In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature filter banks and the best of them will be chosen that minimize the Signal-to-Noise Ratio (SNR). Furthermore, the wavelet function and scaling function related to these filters are reported as the best wavelet for de-noising. Simulation results for de-noising of a noisy ECG signal show that using obtained wavelet by proposed method improves the SNR of about 2.5 dB.展开更多
With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardi...With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardiac arrhythmia is one of the most challenging tasks.The manual analysis of electrocardiogram(ECG)data with the help of the Holter monitor is challenging.Currently,the Convolutional Neural Network(CNN)is receiving considerable attention from researchers for automatically identifying ECG signals.This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute(ANSI)standards and the Association for the Advancement of Medical Instruments(AAMI).The Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia dataset is used for the experiment.The proposed model outperformed the previous model in terms of accuracy and achieved a sensitivity of 99.0%and a positivity predictively 99.2%in the detection of a Ventricular Ectopic Beat(VEB).Moreover,it also gained a sensitivity of 99.0%and positivity predictively of 99.2%for the detection of a supraventricular ectopic beat(SVEB).The overall accuracy of the proposed model is 99.68%.展开更多
With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-base...With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%.展开更多
目的应用平均幅度差函数之和(the sum of average magnitude difference function,SAMDF)处理室颤的心电信号,通过与常用预测除颤时间方法振幅谱面积(amplitude spectrum area,AMSA)进行对比找到预测除颤时间更优的方法。方法应用56头重...目的应用平均幅度差函数之和(the sum of average magnitude difference function,SAMDF)处理室颤的心电信号,通过与常用预测除颤时间方法振幅谱面积(amplitude spectrum area,AMSA)进行对比找到预测除颤时间更优的方法。方法应用56头重(40±5)kg雄性家猪,诱导室颤后进行10 min未处理的室颤、6 min的心肺复苏和除颤。在室颤和心肺复苏过程当中会记录每1 min SAMDF和AMSA的数据并记录下来。进而计算受试者工作特征(receiver operating characteristic,ROC)曲线,应用单向方差分析(one-way analyses of variance,one-way ANOVA)以及正负样本散点图的比较,以此说明两者均能优化最佳除颤时间。比较除颤成功组(Group R)和除颤失败组(Group N)的SAMDF和AMSA的数值以说明两者预测除颤成功的能力。结果散点图显示SAMDF和AMSA均能够区分阳性和负样本(P<0.001)。ROC曲线显示SAMDF(AUC=0.801,P<0.001)和AMSA(AUC=0.777,P<0.001)一样有着相同的能力预测最佳除颤时间。两组SAMDF和AMSA数值比较,Group R的SAMDF和AMSA数值明显高于Group N(P<0.001)。结论SAMDF在优化预测除颤时机方面具有很高的潜力,并且可以作为AMSA等现有有效预测除颤时机特征的补充。展开更多
文摘This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data.
文摘Wearable monitoring system is designed for skin stimulation of conductive adhesive, prolonged physiological monitoring and biocompatibility, whose core is fabric electrodes and it can feedback physiological status by analysis of abnormal electrocardiogram (ECG). Fabric electrode is a sensor to collect biological signals based on textile materials including signals acquisition, processing systems and information feedback platform and so on. In this paper, the design methods and classification of medical electrodes would be introduced. It also sorted out the principle of biological electrical signals, the design methods and characteristics of different material and different structure electrodes from the point of dry electrodes and wet electrodes. There are many methods that can be used to prepare fabric electrodes. They are mainly metal plating, conductive polymer coating, magnetron sputtering, gas phase deposition and impregnation. Besides, they select the appropriate substrate, conductive medium and composite way to get light fabric electrodes which have high conductivity, good conformability. From the perspective of biological signal acquisition by fabric electrodes, this paper also sorted out the influence and approaches of biological signals and the way to feedback the physiological condition of human. As a new generation of bio-signal acquisition material, fabric electrode has met the requirements of the development of modern medicine. Fabric electrode is different from traditional conductive materials in the characteristics of comfort, intelligence, convenience, accuracy and so on.
文摘The electrocardiogram (ECG) signal used for diagnosis and patient monitoring, has recently emerged as a biometric recognition tool. Indeed, ECG signal changes from one person to another according to health status, heart geometry and anatomy among other factors. This paper forms a comparative study between different identification techniques and their performances. Previous works in this field referred to methodologies implementing either set of fiducial or set non-fiducial features. In this study we show a comparison of the same data using a fiducial feature set and a non-fiducial feature set based on statistical calculation of wavelet coefficient. High identification rates were measured in both cases, non-fiducial using Discrete Meyer (dmey) wavelet outperformed the rest at 98.65.
基金Supported by the National Natural Science Foundation of China (No.60873143)the National Key Subject Foundation for Basic Psychology (No.NKSF07003)
文摘Recently,as recognizing emotion has been one of the hallmarks of affective computing,more attention has been paid to physiological signals for emotion recognition.This paper presented an approach to emotion recognition using ElectroCardioGraphy(ECG) signals from multiple subjects.To collect reliable affective ECG data,we applied an arousal method by movie clips to make subjects experience specific emotions without external interference.Through precise location of P-QRS-T wave by continuous wavelet transform,an amount of ECG features was extracted sufficiently.Since feature selection is a combination optimization problem,Improved Binary Particle Swarm Optimization(IBPSO) based on neighborhood search was applied to search out effective features to improve classification results of emotion states with the help of fisher or K-Nearest Neighbor(KNN) classifier.In the experiment,it is shown that the approach is successful and the effective features got from ECG signals can express emotion states excellently.
文摘This paper presents a hybrid technique for the compression of ECG signals based on DWT and exploiting the correlation between signal samples. It incorporates Discrete Wavelet Transform (DWT), Differential Pulse Code Modulation (DPCM), and run-length coding techniques for the compression of different parts of the signal;where lossless compression is adopted in clinically relevant parts and lossy compression is used in those parts that are not clinically relevant. The proposed compression algorithm begins by segmenting the ECG signal into its main components (P-waves, QRS-complexes, T-waves, U-waves and the isoelectric waves). The resulting waves are grouped into Region of Interest (RoI) and Non Region of Interest (NonRoI) parts. Consequently, lossless and lossy compression schemes are applied to the RoI and NonRoI parts respectively. Ideally we would like to compress the signal losslessly, but in many applications this is not an option. Thus, given a fixed bit budget, it makes sense to spend more bits to represent those parts of the signal that belong to a specific RoI and, thus, reconstruct them with higher fidelity, while allowing other parts to suffer larger distortion. For this purpose, the correlation between the successive samples of the RoI part is utilized by adopting DPCM approach. However the NonRoI part is compressed using DWT, thresholding and coding techniques. The wavelet transformation is used for concentrating the signal energy into a small number of transform coefficients. Compression is then achieved by selecting a subset of the most relevant coefficients which afterwards are efficiently coded. Illustrative examples are given to demonstrate thresholding based on energy packing efficiency strategy, coding of DWT coefficients and data packetizing. The performance of the proposed algorithm is tested in terms of the compression ratio and the PRD distortion metrics for the compression of 10 seconds of data extracted from records 100 and 117 of MIT-BIH database. The obtained results revealed that the proposed technique possesses higher compression ratios and lower PRD compared to the other wavelet transformation techniques. The principal advantages of the proposed approach are: 1) the deployment of different compression schemes to compress different ECG parts to reduce the correlation between consecutive signal samples;and 2) getting high compression ratios with acceptable reconstruction signal quality compared to the recently published results.
文摘由于经典机器学习算法在心电信号(Recording of electrocardiograms,ECG)分析中存在特征表征能力不足等原因,基于深度学习投票机制,提出了一种基于多模型投票的深度学习ECG波形分类方法。利用多个具有不同网络参数的深度神经网络对ECG信号进行分类,并通过加权投票来提高ECG信号的分类准确率。实验的平均分类准确率为98%,与传统方法以及其它深度学习方法比如支持向量机,卷积神经网络,深度神经网络以及长短期记忆网络的结果比较,验证了上述方法在分类精度上有显著提高。
文摘In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature filter banks and the best of them will be chosen that minimize the Signal-to-Noise Ratio (SNR). Furthermore, the wavelet function and scaling function related to these filters are reported as the best wavelet for de-noising. Simulation results for de-noising of a noisy ECG signal show that using obtained wavelet by proposed method improves the SNR of about 2.5 dB.
基金supported by Faculty of Computing and Informatics,University Malaysia Sabah,Jalan UMS,Kota Kinabalu Sabah 88400,Malaysia.
文摘With the help of computer-aided diagnostic systems,cardiovascular diseases can be identified timely manner to minimize the mortality rate of patients suffering from cardiac disease.However,the early diagnosis of cardiac arrhythmia is one of the most challenging tasks.The manual analysis of electrocardiogram(ECG)data with the help of the Holter monitor is challenging.Currently,the Convolutional Neural Network(CNN)is receiving considerable attention from researchers for automatically identifying ECG signals.This paper proposes a 9-layer-based CNN model to classify the ECG signals into five primary categories according to the American National Standards Institute(ANSI)standards and the Association for the Advancement of Medical Instruments(AAMI).The Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia dataset is used for the experiment.The proposed model outperformed the previous model in terms of accuracy and achieved a sensitivity of 99.0%and a positivity predictively 99.2%in the detection of a Ventricular Ectopic Beat(VEB).Moreover,it also gained a sensitivity of 99.0%and positivity predictively of 99.2%for the detection of a supraventricular ectopic beat(SVEB).The overall accuracy of the proposed model is 99.68%.
基金the Deanship of Scientific Research at King Khalid University for funding this work through Large Groups Project under Grant Number(71/43)Princess Nourah Bint Abdulrahman University Researchers Supporting Project Number(PNURSP2022R203)Princess Nourah Bint Abdulrahman University,Riyadh,Saudi Arabia.The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work by Grant Code:(22UQU4310373DSR29).
文摘With new developments experienced in Internet of Things(IoT),wearable,and sensing technology,the value of healthcare services has enhanced.This evolution has brought significant changes from conventional medicine-based healthcare to real-time observation-based healthcare.Biomedical Electrocardiogram(ECG)signals are generally utilized in examination and diagnosis of Cardiovascular Diseases(CVDs)since it is quick and non-invasive in nature.Due to increasing number of patients in recent years,the classifier efficiency gets reduced due to high variances observed in ECG signal patterns obtained from patients.In such scenario computer-assisted automated diagnostic tools are important for classification of ECG signals.The current study devises an Improved Bat Algorithm with Deep Learning Based Biomedical ECGSignal Classification(IBADL-BECGC)approach.To accomplish this,the proposed IBADL-BECGC model initially pre-processes the input signals.Besides,IBADL-BECGC model applies NasNet model to derive the features from test ECG signals.In addition,Improved Bat Algorithm(IBA)is employed to optimally fine-tune the hyperparameters related to NasNet approach.Finally,Extreme Learning Machine(ELM)classification algorithm is executed to perform ECG classification method.The presented IBADL-BECGC model was experimentally validated utilizing benchmark dataset.The comparison study outcomes established the improved performance of IBADL-BECGC model over other existing methodologies since the former achieved a maximum accuracy of 97.49%.
文摘目的应用平均幅度差函数之和(the sum of average magnitude difference function,SAMDF)处理室颤的心电信号,通过与常用预测除颤时间方法振幅谱面积(amplitude spectrum area,AMSA)进行对比找到预测除颤时间更优的方法。方法应用56头重(40±5)kg雄性家猪,诱导室颤后进行10 min未处理的室颤、6 min的心肺复苏和除颤。在室颤和心肺复苏过程当中会记录每1 min SAMDF和AMSA的数据并记录下来。进而计算受试者工作特征(receiver operating characteristic,ROC)曲线,应用单向方差分析(one-way analyses of variance,one-way ANOVA)以及正负样本散点图的比较,以此说明两者均能优化最佳除颤时间。比较除颤成功组(Group R)和除颤失败组(Group N)的SAMDF和AMSA的数值以说明两者预测除颤成功的能力。结果散点图显示SAMDF和AMSA均能够区分阳性和负样本(P<0.001)。ROC曲线显示SAMDF(AUC=0.801,P<0.001)和AMSA(AUC=0.777,P<0.001)一样有着相同的能力预测最佳除颤时间。两组SAMDF和AMSA数值比较,Group R的SAMDF和AMSA数值明显高于Group N(P<0.001)。结论SAMDF在优化预测除颤时机方面具有很高的潜力,并且可以作为AMSA等现有有效预测除颤时机特征的补充。