期刊文献+
共找到6,567篇文章
< 1 2 250 >
每页显示 20 50 100
基于双阶段特征提取网络的ECG降噪分类算法
1
作者 林楠 唐凯鹏 +1 位作者 牛勇鹏 谢李鹏 《郑州大学学报(工学版)》 CAS 北大核心 2024年第5期61-68,共8页
临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准... 临床采集到的标准12导联心电图常含有噪声,影响了心电信号分类结果的准确度,为此提出了一种基于双阶段特征提取网络的心电图(ECG)降噪分类算法。首先,在空间特征提取阶段,由深度耦合软阈值化去噪方法的残差收缩网络从输入的12导联标准心电信号中提取空间特征;其次,在时间特征提取阶段,由长短期记忆网络与注意力机制结合继续从心电信号中提取时间特征;最后,通过全连接网络层融合提取到的空间特征与时间特征,输出9个类别的概率预测分布。在CPSC2018数据集上与其他同类型先进分类算法进行了对比实验,验证所提算法的效果,实验结果表明:提出的分类算法在对9类ECG信号进行分类时平均F1分数达到0.854,在各项指标上表现更优。此外,实验证明所提算法在含噪数据中的表现也优于其他主流网络,充分证明了所提算法对于含噪心电信号的降噪分类性能,该算法也可应用于其他类似含噪声生理信号的分析和处理。 展开更多
关键词 心电信号分类 心电信号去噪 残差收缩网络 软阈值化 注意力机制
下载PDF
腔内ECG定位技术联合体外测量法在PICC中的应用
2
作者 赵连英 沈叶红 +1 位作者 周娟 王齐芳 《中外医学研究》 2024年第2期93-96,共4页
目的:探讨腔内心电图(ECG)定位技术联合体外测量法在经外周静脉穿刺的中心静脉导管(PICC)中的应用。方法:选取2021年1月—2023年1月阜宁县人民医院收治的100例行上肢PICC置管的患者作为研究对象。根据抛币法将其随机分为观察组和对照组,... 目的:探讨腔内心电图(ECG)定位技术联合体外测量法在经外周静脉穿刺的中心静脉导管(PICC)中的应用。方法:选取2021年1月—2023年1月阜宁县人民医院收治的100例行上肢PICC置管的患者作为研究对象。根据抛币法将其随机分为观察组和对照组,各50例。两组均进行PICC,对照组PICC应用体外测量法,观察组PICC应用腔内ECG定位技术联合体外测量法。比较两组一次性置管情况、导管相关并发症、置管满意度。结果:观察组置管准确率为98.00%,高于对照组的86.00%,置管过深率低于对照组,差异有统计学意义(P<0.05)。两组并发症发生率比较,差异无统计学意义(P>0.05)。观察组总满意度为100%,高于对照组的92.00%,差异有统计学意义(P<0.05)。结论:腔内ECG定位技术联合体外测量法可提高一次置管准确率,提高患者满意率。 展开更多
关键词 腔内心电图定位技术 体外测量法 经外周静脉穿刺的中心静脉导管 尖端最佳位置
下载PDF
基于深度学习的ECG信号分类与诊断
3
作者 张占 何朗 +3 位作者 张金鹏 王涛 陈为满 娄文璐 《生物医学工程与临床》 CAS 2024年第3期431-437,共7页
心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及... 心电图(ECG)信号描绘了心脏的电活动,提供了有关心脏状态的重要信息。ECG信号分类可用于临床预测、诊断、评估的成果,对于心脏病的自动诊断非常重要。但是基于机器学习的ECG信号分类研究也存在一些如模型复杂度与临床数据实时传输和及时更新等未能解决的问题。因此,笔者首先对近10年来基于机器学习的ECG信号分类从波形形态分类、疾病诊断分类和纯粹的机器学习分类研究进行了回顾与综述,总结出了目前的研究遇到的困境,最后对未来面临的问题进行展望。深入学习模型在现实应用中仍存在一些挑战,未来的研究将进一步探索在芯片中实现机器学习模型的便携性和成本效益的硬件解决方案。此外,机器学习算法应寻求最佳的计算开销平衡,并重视在现实世界环境中的应用。在未来研究中,ECG应多进行临床试验,以评估机器学习模型在处理实际生物医学信号时的有效性和可行性,同时构造性价比高的深度学习模型,以帮助医学专家进行精确和及时的预测和诊断。 展开更多
关键词 ecg 机器学习 深度学习 心血管疾病
下载PDF
Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
4
作者 Muhammad Sohail Irshad Tehreem Masood +3 位作者 Arfan Jaffar Muhammad Rashid Sheeraz Akram Abeer Aljohani 《Computers, Materials & Continua》 SCIE EI 2024年第6期4805-4824,共20页
The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnos... The application of deep learning techniques in the medical field,specifically for Atrial Fibrillation(AFib)detection through Electrocardiogram(ECG)signals,has witnessed significant interest.Accurate and timely diagnosis increases the patient’s chances of recovery.However,issues like overfitting and inconsistent accuracy across datasets remain challenges.In a quest to address these challenges,a study presents two prominent deep learning architectures,ResNet-50 and DenseNet-121,to evaluate their effectiveness in AFib detection.The aim was to create a robust detection mechanism that consistently performs well.Metrics such as loss,accuracy,precision,sensitivity,and Area Under the Curve(AUC)were utilized for evaluation.The findings revealed that ResNet-50 surpassed DenseNet-121 in all evaluated categories.It demonstrated lower loss rate 0.0315 and 0.0305 superior accuracy of 98.77%and 98.88%,precision of 98.78%and 98.89%and sensitivity of 98.76%and 98.86%for training and validation,hinting at its advanced capability for AFib detection.These insights offer a substantial contribution to the existing literature on deep learning applications for AFib detection from ECG signals.The comparative performance data assists future researchers in selecting suitable deep-learning architectures for AFib detection.Moreover,the outcomes of this study are anticipated to stimulate the development of more advanced and efficient ECG-based AFib detection methodologies,for more accurate and early detection of AFib,thereby fostering improved patient care and outcomes. 展开更多
关键词 Convolution neural network atrial fibrillation area under curve ecg false positive rate deep learning CLASSIFICATION
下载PDF
Efficient ECG classification based on Chi-square distance for arrhythmia detection
5
作者 Dhiah Al-Shammary Mustafa Noaman Kadhim +2 位作者 Ahmed M.Mahdi Ayman Ibaida Khandakar Ahmedb 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第2期1-15,共15页
This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for ar... This study introduces a new classifier tailored to address the limitations inherent in conventional classifiers such as K-nearest neighbor(KNN),random forest(RF),decision tree(DT),and support vector machine(SVM)for arrhythmia detection.The proposed classifier leverages the Chi-square distance as a primary metric,providing a specialized and original approach for precise arrhythmia detection.To optimize feature selection and refine the classifier’s performance,particle swarm optimization(PSO)is integrated with the Chi-square distance as a fitness function.This synergistic integration enhances the classifier’s capabilities,resulting in a substantial improvement in accuracy for arrhythmia detection.Experimental results demonstrate the efficacy of the proposed method,achieving a noteworthy accuracy rate of 98% with PSO,higher than 89% achieved without any previous optimization.The classifier outperforms machine learning(ML)and deep learning(DL)techniques,underscoring its reliability and superiority in the realm of arrhythmia classification.The promising results render it an effective method to support both academic and medical communities,offering an advanced and precise solution for arrhythmia detection in electrocardiogram(ECG)data. 展开更多
关键词 Arrhythmia classification Chi-square distance Electrocardiogram(ecg)signal Particle swarm optimization(PSO)
下载PDF
以BP神经网络为工具的短时ECG信号情感分类
6
作者 张善斌 《福建电脑》 2024年第2期11-16,共6页
针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生... 针对目前生理信号情感识别领域采用的生理信号种类太多或使用的生信号长度较长的问题,本文使用BP神经网络对单一、短时ECG信号进行情感识别分类,并对识别时间进行了估计。通过诱发被试喜、怒、哀、惧和平静5种基本情感状态,采集到ECG生理信号,处理后利用神经网络建立模型。实验结果表明,本文方法得到的情感分类的平均识别率为89.14%,且生理信号进行特征提取和识别分类的时间总和小于0.15s,有效地降低了对生理信号种类和窗口长度的依赖。 展开更多
关键词 情感分类 BP神经网络 ecg信号 机器识别
下载PDF
基于卷积神经网络的ECG心律失常分类研究
7
作者 杨风健 李小琪 李洪亮 《电子设计工程》 2024年第9期165-169,共5页
基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批... 基于心电信号进行心律失常自动检测和分类识别研究,辅助临床医生进行心血管相关疾病诊断。采用MIT-BIH数据库作为数据源,对该数据库心电数据进行小波分解与重构去噪后,构建卷积神经网络模型,结合Adam优化器,并优化丢弃值、训练步数和批大小三个超参数来优化模型,使用准确率、灵敏性和正预测率三个指标评价模型性能。实验结果表明,模型实现心律失常五分类的整体准确率大于99%,与现有模型性能相比,准确率提升1.2%。 展开更多
关键词 卷积神经网络 心律失常 心电信号 小波变换
下载PDF
全面解读IA ECG广色域测试版ICC文件
8
作者 姚磊磊 赵广 《中国印刷》 2024年第2期56-61,共6页
七色分色技术已发展多年,欧美印刷机构和协会相继投人研发和制定更新相关标准体系,当前色彩校准技术手段等条件正走向成熟,本文对IAECG广色域测试版ICC文件进行全面解读。
关键词 测试版 广色域 ecg 全面解读 色彩校准 分色技术 技术手段
下载PDF
缓慢型心房颤动(Af)伴发长R-R间期在静态心电图(ECG)中发生率及意义
9
作者 毛社娟 《中文科技期刊数据库(引文版)医药卫生》 2024年第4期0115-0118,共4页
探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);... 探讨ECG(静态心电图)在缓慢型Af(心房颤动)伴发长R-R间期中的应用意义。方法 截选2021年03月至2022年03月54例ECG提示缓慢型心房颤动患者,按照有无伴随相关症状(头晕、黑朦、晕厥等),分为甲组33例(有相关症状)和乙组21例(无相关症状);按照年龄,分为老年组30例(≥80岁)和非老年组24例(<80岁);比较各组伴发长R-R间期发生率。结果 本试验中,甲、乙组伴发长R-R间期发生率差异明显,甲组发生率显著更高(P<0.05)。老年组、非老年组伴发长R-R间期发生率差异明显,老年组发生率显著更高(P<0.05)。结论 缓慢型心房颤动行静态心电图检查,能够准确诊断患者有无伴发长R-R间期;针对老年患者和伴随头晕、黑朦、晕厥等症状患者,应加强其静态心电图检查,以便更好诊断、鉴别其病情,促使患者尽早接受专业治疗和干预,保证其生命安全与预后质量。 展开更多
关键词 静态心电图(ecg) 缓慢型心房颤动 长R-R间期
下载PDF
基于卷积神经网络与ECG信息的多模态疲劳驾驶检测研究
10
作者 闫凯航 石岩松 +5 位作者 邓炬鑫 李汶翰 庞志颖 翁明珠 潘志广 孙修泽 《电脑知识与技术》 2024年第12期24-26,34,共4页
为解决驾驶员疲劳驾驶引发的交通事故问题,本研究致力于设计一款高精度、及时预警的疲劳驾驶检测与预警装置。文章提出了一种基于卷积神经网络与ECG信息的多模态疲劳驾驶检测方法:首先,通过训练数据集获取模型文件,并将其与预设行为进... 为解决驾驶员疲劳驾驶引发的交通事故问题,本研究致力于设计一款高精度、及时预警的疲劳驾驶检测与预警装置。文章提出了一种基于卷积神经网络与ECG信息的多模态疲劳驾驶检测方法:首先,通过训练数据集获取模型文件,并将其与预设行为进行对比,得出预警结果;接着,结合ECG信号对驾驶员的驾驶状态进行进一步分析,输出最终结果并触发预警。实验结果表明,该方法能够准确识别驾驶员的疲劳状态并及时发出预警,最高检测正确率达到了99%,验证了方法的可行性。 展开更多
关键词 疲劳检测 YOLOv4卷积神经网络模型 面部识别 ecg 特征融合
下载PDF
基于LSTM网络与ECG信号的青少年运动强度识别方法 被引量:1
11
作者 董晋 季炜然 《印刷与数字媒体技术研究》 CAS 北大核心 2023年第6期49-58,共10页
适当的体育运动有利于青少年身体健康,但是大多数青少年在运动过程中,盲目地进行高强度的体育锻炼,很容易造成身体的损伤甚至危及生命。因此,为了实现对青少年运动的合理安排和监测,本研究提出了一种基于长短期记忆人工神经网络(Long Sh... 适当的体育运动有利于青少年身体健康,但是大多数青少年在运动过程中,盲目地进行高强度的体育锻炼,很容易造成身体的损伤甚至危及生命。因此,为了实现对青少年运动的合理安排和监测,本研究提出了一种基于长短期记忆人工神经网络(Long Short-Term Memory,LSTM)与心电图(Electrocardiogram,ECG)信号的青少年运动强度识别方法。该方法可以在体育锻炼中实时监测运动强度,防止体育运动中不合理锻炼带来的危险。本研究算法采用多层的LSTM网络提取运动过程中的ECG信号特征,在网络中加入注意力机制,模仿生物的视觉注意力行为,对一段时间序列中的不同区域区别对待,重点关注特征区域,抑制无用信息,进一步提升监测效率和准确率。实验识别准确率可达99.40%,表明所提方法所构建的青少年运动强度诊断模型具有较高的诊断精度,且具有较强的泛化能力。 展开更多
关键词 青少年 LSTM ecg 运动强度
下载PDF
基于VMD和平滑滤波的ECG去噪方法 被引量:1
12
作者 魏平俊 杨耀华 +1 位作者 胡征慧 陈浩然 《电工技术》 2023年第9期17-21,共5页
针对目前变分模态分解法在心电信号降噪时存在模态分量难以取舍的问题,提出了一种改进的变分模态分解方法。首先对含噪心电信号进行变分模态分解,通过各模态分量的中心频率和模态分量与原始心电信号的互相关来确定噪声占优的模态分量与... 针对目前变分模态分解法在心电信号降噪时存在模态分量难以取舍的问题,提出了一种改进的变分模态分解方法。首先对含噪心电信号进行变分模态分解,通过各模态分量的中心频率和模态分量与原始心电信号的互相关来确定噪声占优的模态分量与信号占优的模态分量。然后选取中心频率处于医学心跳频率范围的模态分量来提取心跳频率对应的采样点数,根据心跳频率对噪声占优的模态分量和信号占优的模态分量分别进行平滑滤波。最后使用处理过的模态分量重构心电信号,完成基线漂移和肌电噪声的去除。实验结果表明该方法的去噪效果优于小波阈值法、变分模态分解法及两者相结合的方法。 展开更多
关键词 心电信号 肌电干扰 去噪 变分模态分解
下载PDF
基于fNIRS和ECG的大脑警觉度客观检测研究 被引量:1
13
作者 王璐琪 姜劲 +4 位作者 孙子恒 代艳莹 曹勇 焦学军 周鹏 《载人航天》 CSCD 北大核心 2023年第2期177-185,共9页
航天员执行操纵和维护设备等任务时需保持高警觉状态,以便应对突发情况,保护自身安全。针对目前警觉度检测尚无统一标准,单生理参数检测法可靠性差的问题,利用多模态参数检测法,采用PVT任务与2-back任务组合诱导警觉度降低,通过功能性... 航天员执行操纵和维护设备等任务时需保持高警觉状态,以便应对突发情况,保护自身安全。针对目前警觉度检测尚无统一标准,单生理参数检测法可靠性差的问题,利用多模态参数检测法,采用PVT任务与2-back任务组合诱导警觉度降低,通过功能性近红外光谱技术(fNIRS)和心电技术(ECG)采集14名被试前额部分的氧合血红蛋白(HbO)信号、脱氧血红蛋白(Hb)信号以及ECG信号,并记录被试的行为学数据。结果表明:此实验范式成功诱导警觉度下降,在低警觉度状态下大脑代谢水平增加,复杂度增加,大脑前额区活跃度增加;心率降低,副交感神经活性增强。二者特征相结合增大了警觉度识别三分类准确度。在支持向量机模型下,14名被试的平均三分类正确率达到(80.37±5.76)%,较之前文献报道的正确率有所提升。验证了此特征模型检测警觉度水平的有效性及使用混合特征矩阵提高警觉度模型的鲁棒性。 展开更多
关键词 功能性近红外光谱 心电 警觉度 支持向量机 K近邻检测法 随机森林
下载PDF
模拟ECG信号在320排CT冠脉成像中的应用价值 被引量:1
14
作者 成满平 蔡晓庆 +4 位作者 牛娟琴 薛巍 陈纲 岳丽娜 杜林芝 《中国CT和MRI杂志》 2023年第11期77-79,共3页
目的探讨模拟ECG信号在320排CT冠脉成像中的应用价值。方法收集和分析我院2015-01-01至2021-10-01期间,使用模拟ECG信号成像的20例患者(A组),与同时期,随机抽取的,常规技术成像的20例患者(B组)的冠脉成像结果,实行对照研究。结果A、B两... 目的探讨模拟ECG信号在320排CT冠脉成像中的应用价值。方法收集和分析我院2015-01-01至2021-10-01期间,使用模拟ECG信号成像的20例患者(A组),与同时期,随机抽取的,常规技术成像的20例患者(B组)的冠脉成像结果,实行对照研究。结果A、B两组图像质量主观法评价,图像质量无显著差异(P=0.3758>0.05);A、B两组图像质量客观法评价,升主动脉根部,右冠状动脉近端,左前降支近端,左旋支近端CT值以及升主动脉根部层面噪声均无明显差异(P>0.05);A、B两组辐射剂量对比有显著差异(P<0.01)。结论模拟ECG信号在320排CT冠脉成像中的应用是可行的,值得推广。 展开更多
关键词 模拟 ecg信号 冠状动脉CT成像 320排CT
下载PDF
基于AI-ECG的区域胸痛综合管理平台的建设与实践 被引量:2
15
作者 戴秋玉 张伟 +2 位作者 黄钊 陈杰 陶震寰 《中国医疗设备》 2023年第10期84-89,共6页
目的针对区域胸痛中心建设中存在的问题,提出一种利用信息手段优化区域胸痛综合管理平台的设计方案及具体实现路径。方法在现有胸痛管理系统的基础上,加入人工智能心电图(Artificial Intelligence Electrocardiograph,AI-ECG)系统、整... 目的针对区域胸痛中心建设中存在的问题,提出一种利用信息手段优化区域胸痛综合管理平台的设计方案及具体实现路径。方法在现有胸痛管理系统的基础上,加入人工智能心电图(Artificial Intelligence Electrocardiograph,AI-ECG)系统、整合多个医疗救治系统、打造移动应用服务,建立“患者-基层-急救中心-胸痛中心”四方联动的区域协同救治体系。采集区域心电中心海量标准化数据,训练AI-ECG模型,并将AI算法应用于疾病筛查、快速甄别和术后监测等方面。结果通过AI-ECG及胸痛管理平台的优化,提高了基层医院的诊断准确性和效率,心电图十八分类诊断模型诊断特异性、敏感度、准确率均值分别是95.79%、87.88%和96.74%;AI辅助诊断平均每份心电图的分析时间约为0.12 s,心内科临床医生诊断时间约为1 min;发病到首次医疗接触和首次医疗接触到球囊再灌注的平均时间均明显缩短。结论平台的建设及应用,实现了胸痛患者院前、院中、院后的全流程闭环管理,增强了胸痛患者自我健康管理意识,对智慧胸痛中心的建设具有一定的参考价值。 展开更多
关键词 人工智能 辅助诊断 心电图 胸痛中心 区域协同
下载PDF
ECG-6951D型心电图机定标原理分析与故障解决方案 被引量:1
16
作者 李昌锋 陈海斌 陈臻浩 《中国医学装备》 2023年第3期210-212,共3页
心电图机的定标在临床中主要用于测量心电信号幅度大小和校正机器灵敏度。通过对ECG-6951D型数字心电图机定标的原理、技术流程以及电路进行分析,归纳总结定标电路常见的3种故障现象和故障处理方法,为数字心电图机维修提出解决方案。
关键词 数字心电图机 定标 电路 故障维修
下载PDF
基于ECG的活体检测与身份验证SOC设计
17
作者 王永蔹 陈子为 +2 位作者 曹坤 杨玉航 谢帅 《成都信息工程大学学报》 2023年第5期543-547,共5页
由于心电图的活体指示特性和独特而复杂的信号特征,采用心电图进行身份识别是最安全的生物识别方法之一。提出了一种在FPGA上搭建适用于ECG身份识别的专用片上系统(SOC)设计方案。该设计利用基于主成分分析(PCA)与欧几里得距离度量的EC... 由于心电图的活体指示特性和独特而复杂的信号特征,采用心电图进行身份识别是最安全的生物识别方法之一。提出了一种在FPGA上搭建适用于ECG身份识别的专用片上系统(SOC)设计方案。该设计利用基于主成分分析(PCA)与欧几里得距离度量的ECG身份识别算法进行身份识别,并利用FPGA并行运算的优势对该识别算法实现硬件加速。最后基于ARM公司开源的DesignStart Cortex-M3 IP核,在Xilinx FPGA上实现了该片上系统。结果显示:所设计的片上系统识别正确性可达96.8%,运行性能最高可达90 MHz,满足实时性需求。 展开更多
关键词 DesignStart 片上系统 生物特征人体识别 ecg
下载PDF
基于VMD算法的ECG信号基线漂移校正研究
18
作者 顾旋 张伟 《现代计算机》 2023年第4期54-59,共6页
针对现有方法校正ECG信号基线漂移的缺陷,提出基于VMD算法校正ECG信号的基线漂移。首先获取含真实基线漂移的ECG信号;然后基于最佳参数的VMD将含噪ECG信号分解为多个IMF分量,利用各IMF分量频谱图的峰值频率判断基线漂移;最后将含基线漂... 针对现有方法校正ECG信号基线漂移的缺陷,提出基于VMD算法校正ECG信号的基线漂移。首先获取含真实基线漂移的ECG信号;然后基于最佳参数的VMD将含噪ECG信号分解为多个IMF分量,利用各IMF分量频谱图的峰值频率判断基线漂移;最后将含基线漂移的IMF分量舍弃,将其他IMF分量叠加得到去除基线漂移的ECG信号。同时将EMD算法和该方法对相同含基线漂移的ECG信号进行去噪,结果表明,该方法能更好地校正ECG信号基线漂移,且去噪后与原信号的相关系数更大。 展开更多
关键词 ecg信号 基线漂移 VMD算法 EMD算法 校正
下载PDF
基于人体ECG信号监测的汽车座椅研究 被引量:1
19
作者 胡瑄 《时代汽车》 2023年第1期166-168,共3页
设计了一种基于驾驶员生命信息个性化监测的汽车座椅,通过安装在汽车座椅上的集成医疗传感器系统,对驾驶员生命信号进行监测。使用容性耦合传感器,对驾驶员运用电容式心电检测技术,获取人体ECG(心率)信号。设计了系统硬件结构,设计了包... 设计了一种基于驾驶员生命信息个性化监测的汽车座椅,通过安装在汽车座椅上的集成医疗传感器系统,对驾驶员生命信号进行监测。使用容性耦合传感器,对驾驶员运用电容式心电检测技术,获取人体ECG(心率)信号。设计了系统硬件结构,设计了包括数据采集和处理在内的电路,比较了传感器组处于不同位置的下QRS(心电图波群)值,解决了传感器最佳安装位置问题。实验结果证明:该系统能够较好的记录驾驶员人体ECG信号,测试结果能够在医学上判断出驾驶员身体状况是否处于良好状态。 展开更多
关键词 汽车座椅 智能化 生命信号 ecg信号 监测技术
下载PDF
多模型投票的深度学习ECG分类方法设计与研究 被引量:1
20
作者 李伟康 邓星 邵海见 《计算机仿真》 北大核心 2023年第8期339-344,共6页
由于经典机器学习算法在心电信号(Recording of electrocardiograms,ECG)分析中存在特征表征能力不足等原因,基于深度学习投票机制,提出了一种基于多模型投票的深度学习ECG波形分类方法。利用多个具有不同网络参数的深度神经网络对ECG... 由于经典机器学习算法在心电信号(Recording of electrocardiograms,ECG)分析中存在特征表征能力不足等原因,基于深度学习投票机制,提出了一种基于多模型投票的深度学习ECG波形分类方法。利用多个具有不同网络参数的深度神经网络对ECG信号进行分类,并通过加权投票来提高ECG信号的分类准确率。实验的平均分类准确率为98%,与传统方法以及其它深度学习方法比如支持向量机,卷积神经网络,深度神经网络以及长短期记忆网络的结果比较,验证了上述方法在分类精度上有显著提高。 展开更多
关键词 多模型 深度学习 投票机制 心电信号
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部