Much attention has been given to the Internet of Things (IoT) by citizens, industries, governments, and universities for applications like smart buildings, environmental monitoring, health care and so on. With IoT, ...Much attention has been given to the Internet of Things (IoT) by citizens, industries, governments, and universities for applications like smart buildings, environmental monitoring, health care and so on. With IoT, networkconnectivity is facilitated between smart devices from anyplace and anytime.IoT-based health monitoring systems are gaining popularity and acceptance forcontinuous monitoring and detect health abnormalities from the data collected.Electrocardiographic (ECG) signals are widely used for heart diseases detection.A novel method has been proposed in this work for ECG monitoring using IoTtechniques. In this work, a two-stage approach is employed. In the first stage, arouting protocol based on Dynamic Source Routing (DSR) and Routing byEnergy and Link quality (REL) for IoT healthcare platform is proposed for effi-cient data collection, and in the second stage, classification of ECG for Arrhythmia. Furthermore, this work has evaluated Support Vector Machine (SVM),Artificial Neural Network (ANN), and Convolution Neural Networks (CNNs)-based approach for ECG signals classification. Deep-ECG will use a deep CNNto extract critical features and then compare through evaluation of simple and fastdistance functions in order to obtain an efficient classification of heart abnormalities. For the identification of abnormal data, this work has proposed techniquesfor the classification of ECG data, which has been obtained from mobile watchusers. For experimental verification of the proposed methods, the Beth Israel Hospital (MIT/BIH) Arrhythmia and Massachusetts Institute of Technology (MIT)Database was used for evaluation. Results confirm the presented method’s superior performance with regards to the accuracy of classification. The CNN achievedan accuracy of 91.92% and has a higher accuracy of 4.98% for the SVM and2.68% for the ANN.展开更多
According to the definition of correlation dimension in fractal theory, this paper presented a method to determine and assess noise part in detected transient signal. Such work is essential to decrease the noise part ...According to the definition of correlation dimension in fractal theory, this paper presented a method to determine and assess noise part in detected transient signal. Such work is essential to decrease the noise part in the detected signal. It is proved that heart period signal (HPS) is one typical sort of transient chaotic signal. Through experiment and simulation, the analysis of chaotic HPS in the detected signal was done. In the end, we deepen the researches on attractor dimension of HPS for persons who are different in age.展开更多
文摘Much attention has been given to the Internet of Things (IoT) by citizens, industries, governments, and universities for applications like smart buildings, environmental monitoring, health care and so on. With IoT, networkconnectivity is facilitated between smart devices from anyplace and anytime.IoT-based health monitoring systems are gaining popularity and acceptance forcontinuous monitoring and detect health abnormalities from the data collected.Electrocardiographic (ECG) signals are widely used for heart diseases detection.A novel method has been proposed in this work for ECG monitoring using IoTtechniques. In this work, a two-stage approach is employed. In the first stage, arouting protocol based on Dynamic Source Routing (DSR) and Routing byEnergy and Link quality (REL) for IoT healthcare platform is proposed for effi-cient data collection, and in the second stage, classification of ECG for Arrhythmia. Furthermore, this work has evaluated Support Vector Machine (SVM),Artificial Neural Network (ANN), and Convolution Neural Networks (CNNs)-based approach for ECG signals classification. Deep-ECG will use a deep CNNto extract critical features and then compare through evaluation of simple and fastdistance functions in order to obtain an efficient classification of heart abnormalities. For the identification of abnormal data, this work has proposed techniquesfor the classification of ECG data, which has been obtained from mobile watchusers. For experimental verification of the proposed methods, the Beth Israel Hospital (MIT/BIH) Arrhythmia and Massachusetts Institute of Technology (MIT)Database was used for evaluation. Results confirm the presented method’s superior performance with regards to the accuracy of classification. The CNN achievedan accuracy of 91.92% and has a higher accuracy of 4.98% for the SVM and2.68% for the ANN.
文摘According to the definition of correlation dimension in fractal theory, this paper presented a method to determine and assess noise part in detected transient signal. Such work is essential to decrease the noise part in the detected signal. It is proved that heart period signal (HPS) is one typical sort of transient chaotic signal. Through experiment and simulation, the analysis of chaotic HPS in the detected signal was done. In the end, we deepen the researches on attractor dimension of HPS for persons who are different in age.