Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, thre...Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, three-dimensional lily-like CoNi_2S_4 supported on nickel foam(CoNi_2S_4/Ni) has been fabricated by sulfuration of the Co–Ni precursor. As expected, CoNi_2S_4/Ni possesses such outstanding electrocatalytic properties that it requires an overpotential of only 54 mV at 10 mA cm^(-2) and 328 mV at 100 mA cm^(-2) for HER and OER, respectively. Furthermore, by utilizing the CoNi_2S_4/Ni electrodes as bifunctional electrocatalysts for overall water splitting, a current density of 10 mA cm^(-2) can be obtained at a voltage of only 1.56 V.展开更多
Doping heteroatoms into carbon matrix was an efficient strategy to achieve a high-performance non-precious metal oxygen reduction electrocatalyst. Herein, an in situ templated synthesis strategy has been demonstrated ...Doping heteroatoms into carbon matrix was an efficient strategy to achieve a high-performance non-precious metal oxygen reduction electrocatalyst. Herein, an in situ templated synthesis strategy has been demonstrated to fabricate nitrogen, sulfur and iron-tridoped mesoporous carbon nanosheets(NSFC) with FeCl3 as the two-dimensional template. And a protic salt was used as the carbon, nitrogen and sulfur source, which realized one-step preparation of catalyst materials and the co-doping of various heteroatoms simultaneously. As a result, the optimized NSFC catalyst possessed comparable catalytic activity and selectivity, while superior durability and methanol permeability resistance to commercial 30 wt% Pt/C catalyst in alkaline media. Such excellent performance should be ascribed to the efficient multiple-element doping into the large-specific-surface-area and highly stable carbon nanosheets realized by the in situ synthesis route with a novel FeCl3 template.展开更多
基金supported by the National Natural Science Foundation of China(21376105,21576113)~~
文摘Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, three-dimensional lily-like CoNi_2S_4 supported on nickel foam(CoNi_2S_4/Ni) has been fabricated by sulfuration of the Co–Ni precursor. As expected, CoNi_2S_4/Ni possesses such outstanding electrocatalytic properties that it requires an overpotential of only 54 mV at 10 mA cm^(-2) and 328 mV at 100 mA cm^(-2) for HER and OER, respectively. Furthermore, by utilizing the CoNi_2S_4/Ni electrodes as bifunctional electrocatalysts for overall water splitting, a current density of 10 mA cm^(-2) can be obtained at a voltage of only 1.56 V.
基金supported by the National Natural Science Foundation of China(21273114,21771107)Natural Science Foundation of Jiangsu Province(BK20161484)+3 种基金the Fundamental Research Funds for the Central Universities(NE2015003)the "Six Talent Peaks Program" of Jiangsu Province(2013-XNY-010)Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutionthe Foundation of Graduate Innovation Center in NUAA(kfjj20160613)~~
文摘Doping heteroatoms into carbon matrix was an efficient strategy to achieve a high-performance non-precious metal oxygen reduction electrocatalyst. Herein, an in situ templated synthesis strategy has been demonstrated to fabricate nitrogen, sulfur and iron-tridoped mesoporous carbon nanosheets(NSFC) with FeCl3 as the two-dimensional template. And a protic salt was used as the carbon, nitrogen and sulfur source, which realized one-step preparation of catalyst materials and the co-doping of various heteroatoms simultaneously. As a result, the optimized NSFC catalyst possessed comparable catalytic activity and selectivity, while superior durability and methanol permeability resistance to commercial 30 wt% Pt/C catalyst in alkaline media. Such excellent performance should be ascribed to the efficient multiple-element doping into the large-specific-surface-area and highly stable carbon nanosheets realized by the in situ synthesis route with a novel FeCl3 template.